
ibm.com/redbooks

Draft Document for Review January 29, 2007 3:05 pm SG24-7331-00

SOA Architecture
Handbook for z/OS

Alex Louwe Kooijmans
Raymond Chiang

Irin Litman
Mats Pettersson

Bill Seubert
Jens Erik Wendelboe

Scenarios to migrate to an SOA on z/OS

SOA technology solutions on z/OS

Quality of Service and
governance of SOA on z/OS

Front cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

SOA Architcture Handbook for z/OS

December 2006

International Technical Support Organization

Draft Document for Review January 29, 2007 3:05 pm 7331edno.fm

SG24-7331-00

7331edno.fm Draft Document for Review January 29, 2007 3:05 pm

© Copyright International Business Machines Corporation 2006. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

First Edition (December 2006)

This document created or updated on January 29, 2007.

Note: Before using this information and the product it supports, read the information in
“Notices” on page ix.

Draft Document for Review January 29, 2007 3:05 pm 7331TOC.fm
Contents

Notices . ix
Trademarks . x

Preface . xi
The team that wrote this redbook. xi
Become a published author . xiii
Comments welcome. xiii

Chapter 1. Introduction . 1
1.1 The approach in this book . 2

1.1.1 Starting scenarios . 3
1.1.2 Transition approaches. 4
1.1.3 Solution techniques. 4
1.1.4 Service interface patterns . 5

1.2 The target audience for this book . 5
1.3 Objectives of this book . 5
1.4 How this book is organized . 6

Chapter 2. Target SOA architecture on z/OS. 7
2.1 Overview . 8
2.2 The context . 8
2.3 SOA basics . 10

2.3.1 SOA basic concepts . 10
2.3.2 SOA perspectives . 10
2.3.3 Defining a service . 11
2.3.4 IBM SOA lifecycle . 15

2.4 IBM SOA reference architecture . 16
2.4.1 Development Services . 18
2.4.2 Business Innovation and Optimization Services 18
2.4.3 The Enterprise Service Bus (ESB) . 19
2.4.4 Interaction Services. 21
2.4.5 Process Services . 21
2.4.6 Information Services . 21
2.4.7 Access Services . 21
2.4.8 Partner Services . 22
2.4.9 Business Application Services . 22
2.4.10 Infrastructure Services . 22
2.4.11 IT Services Management Services . 23

2.5 Criteria to determine whether the SOA has been implemented succesfully23
© Copyright IBM Corp. 2006. All rights reserved. iii

7331TOC.fm Draft Document for Review January 29, 2007 3:05 pm
2.6 IBM options on z/OS platform for each building block of the SOA reference
architecture. 24

2.6.1 Infrastructure Services . 25
2.6.2 Development Services . 25
2.6.3 IT Services Management Services . 26
2.6.4 Business Innovation and Optimization Services 26
2.6.5 Interaction Services. 26
2.6.6 Process Services . 26
2.6.7 Information Services . 26
2.6.8 Partner Services . 26
2.6.9 Business Application Services . 27
2.6.10 Access Services . 27
2.6.11 Enterprise Service Bus (ESB) . 27

2.7 Analysis of the IBM products available for the SOA on z/OS 27
2.7.1 WebSphere Application Server for z/OS. 29
2.7.2 WebSphere Portal . 30
2.7.3 WebSphere Process Server . 31
2.7.4 Websphere ESB . 32
2.7.5 Websphere Message Broker. 34
2.7.6 WebSphere Service Registry and Repository. 35
2.7.7 WebSphere Host Access Transformation Services 36
2.7.8 CICS Transaction Server . 37
2.7.9 IMS Transaction Manager. 38
2.7.10 DB2 . 38
2.7.11 SOA systems management on z/OS . 39
2.7.12 IBM Tivoli Composite Application Manager for SOA V6.0 41
2.7.13 IBM Tivoli Composite Application Manager for WebSphere 41

2.8 Implementation options for the SOA architecture on z/OS 41
2.8.1 SOA implementation option 1 - “service enablement” 42
2.8.2 SOA implementation option 2 - “service integration” 44
2.8.3 SOA implementation option 3 - “process integration” 47
2.8.4 Conclusion . 51

Chapter 3. Starting scenarios . 53
3.1 Starting scenario - 3270 application . 55

3.1.1 A typical 3270 application . 55
3.1.2 3270 application variations . 56
3.1.3 3270 application characteristics . 57
3.1.4 Challenges when moving to an SOA . 62

3.2 Starting scenario - multichannel . 62
3.2.1 Multichannel variations . 65
3.2.2 Multichannel characteristics . 65
3.2.3 Challenges when moving to an SOA . 70
iv SOA Architcture Handbook for z/OS

Draft Document for Review January 29, 2007 3:05 pm 7331TOC.fm
3.3 Starting scenario - batch . 71
3.3.1 Batch variations. 73
3.3.2 Batch characteristics . 73
3.3.3 Challenges when moving to an SOA . 77

3.4 Starting scenario - data access and integration . 78
3.4.1 Data on z/OS. 78
3.4.2 Data access and integration variations . 79
3.4.3 Characteristics . 84
3.4.4 Challenges when moving to an SOA . 86

3.5 Starting scenario - Homegrown SOA . 87
3.5.1 Homegrown SOA variations . 89
3.5.2 Homegrown SOA characteristics . 90
3.5.3 Challenges when moving to an SOA . 93

Chapter 4. The SOA transition process. 95
4.1 Methodologies for analyzing the business and application environment . 96

4.1.1 Service-Oriented Modeling and Architecture (SOMA) 96
4.1.2 Service Integration Maturity Model (SIMM). 104
4.1.3 SOA Readiness Assessment . 107

4.2 Tools to assist in the SOA transformation process 108
4.2.1 Tools used in the Model stage . 109
4.2.2 Discovery and refactoring tools used in the Assemble stage 110
4.2.3 Code development tools used in the Assemble stage 115
4.2.4 Tools used in the Manage stage . 117
4.2.5 Interrelationships between tools . 117

4.3 A pattern-driven approach to transition from “core” applications to services
118

4.3.1 Starting scenarios . 119
4.3.2 Service interface patterns . 119
4.3.3 Transition approaches. 122
4.3.4 Characteristics of the service interface patterns and transition

approaches . 124
4.3.5 Applying the transition approaches and service interface patterns. 126

Chapter 5. SOA implementation scenarios . 129
5.1 The architectural decision process . 130

5.1.1 The existing IT environment . 130
5.1.2 Functional and non-functional requirements 131
5.1.3 The architectural overview and operational architecture. 134
5.1.4 Selecting a transition approach and solution technique 134

5.2 SOA implementation scenarios for 3270 application. 135
5.2.1 Using the Improve transition approach . 136
5.2.2 Using the Adapt transition approach . 144
 Contents v

7331TOC.fm Draft Document for Review January 29, 2007 3:05 pm
5.2.3 Using the Innovate transition approach. 160
5.3 SOA implementation scenarios for multichannel. 162

5.3.1 Using the Improve transition approach . 163
5.3.2 Using the Adapt transition approach . 169
5.3.3 Using the Innovate transition approach. 176

5.4 SOA implementation scenarios for batch . 183
5.4.1 Multi entity handling in batch services. 185
5.4.2 Using the improve transition approach . 187
5.4.3 Using the adapt transition approach with batch as the service provider

189
5.4.4 Using the adapt transition approach with batch as the service caller191
5.4.5 Using the innovate transition approach. 192
5.4.6 A practical, mixed approach . 196

5.5 SOA implementation scenarios - Data access and integration 197
5.5.1 Variation 1: Data access . 198
5.5.2 Variation 2: Integrator . 203
5.5.3 Variation 3: batch and messaging ETL . 209

5.6 SOA implementation scenarios for homegrown SOA 213
5.6.1 Using the Improve transition approach . 214
5.6.2 Using the Adapt transition approach . 216
5.6.3 Using the Innovate transition approach. 218

Chapter 6. Towards service integration and process integration. 219
6.1 The SOA implementation block approach. 220

6.1.1 Stage one - “service enablement” implementation block 220
6.1.2 Stage two - “service integration” implementation blocks. 221
6.1.3 Stage three - “process integration” implementation blocks 221

6.2 Stage one - “service enablement” . 222
6.3 Stage two - “Service Integration”. 223

6.3.1 Implementing the block “ESB exploitation” 226
6.3.2 Implementing the block “Advanced Services Adoption” 236

6.4 Stage 3 - “process integration” . 240
6.4.1 Implementing the block “Business Services Exploitation” 242
6.4.2 Implementing the block “ Business Process Orchestration” 244
6.4.3 Implementing the block “Discovery and Dynamic Binding 251
6.4.4 The end of the journey . 254

Chapter 7. SOA governance on z/OS. 257
7.1 What gets governed? . 259
7.2 Who governs? . 259
7.3 Aspects of SOA governance . 260

7.3.1 Service definition. 260
7.3.2 Service versioning and migration . 261
vi SOA Architcture Handbook for z/OS

Draft Document for Review January 29, 2007 3:05 pm 7331TOC.fm
7.3.3 Service registries. 262
7.3.4 Service monitoring . 265

Chapter 8. SOA and z/OS QoS . 267
8.1 Overview . 269
8.2 Quality of Service on the System z platform and inside z/OS 271

8.2.1 Scalability . 271
8.2.2 Availability . 271
8.2.3 Reliability . 274
8.2.4 Security . 275
8.2.5 Total Cost of Ownership (TCO). 276

8.3 Quality of Service of the SOA building blocks . 276
8.3.1 Scalability . 276
8.3.2 Availability . 284
8.3.3 Reliability . 285
8.3.4 Security . 290
8.3.5 Total cost of ownership . 302

8.4 Quality of service of the SOA architecture . 304
8.5 QoS and our implementation scenarios . 304

8.5.1 Scalability in our implementation scenarios 305
8.5.2 Availability in our implementation scenarios 308
8.5.3 Reliability in our implementation scenarios 311
8.5.4 Security in our implementation scenarios . 314
8.5.5 TCO in our implementation scenarios. 316

8.6 Managing QoS with SOA on z/OS . 319
8.7 Conclusion. 320

Chapter 9. SOA enablement case studies. 321
9.1 SOA enablement case study 1: IBM Life Insurance Solution Showcase 322

9.1.1 SOA in an insurance industry context . 322
9.1.2 The business problem. 323
9.1.3 Enterprise view . 323
9.1.4 Application architecture. 325
9.1.5 Operational model. 340
9.1.6 Infrastructure (technical) architecture . 342
9.1.7 SOA tooling . 345
9.1.8 Conclusion . 352

9.2 Case study 2: A bank deployed a large-scale SOA solution based on Web
services . 354

9.2.1 Business driver . 354
9.2.2 Design objectives . 354
9.2.3 A typical business flow . 354
9.2.4 Architectural decisions . 356
 Contents vii

7331TOC.fm Draft Document for Review January 29, 2007 3:05 pm
9.2.5 Solution overview . 360
9.2.6 Key challenges in the Services Provider layer 362

Related publications . 365
IBM Redbooks . 365
Other publications . 365
Online resources . 365
How to get IBM Redbooks . 366
Help from IBM . 366

Index . 367
viii SOA Architcture Handbook for z/OS

Draft Document for Review January 29, 2007 3:05 pm 7331spec.fm
Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at
any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm
the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on
the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the
sample programs are written. These examples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or function of these programs.
© Copyright IBM Corp. 2006. All rights reserved. ix

7331spec.fm Draft Document for Review January 29, 2007 3:05 pm
Trademarks
The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

Redbooks (logo) ™
eServer™
z/OS®
z/VM®
zSeries®
z9™
AIX®
BladeCenter®
CICS®
DB2 Universal Database™
DB2®
DFSMSdss™

Everyplace®
Geographically Dispersed

Parallel Sysplex™
GDPS®
IBM®
IMS™
MVS™
Parallel Sysplex®
Rational Unified Process®
Rational®
Redbooks™
RequisitePro®

RACF®
RUP®
System p™
System z™
System z9™
Tivoli Enterprise™
Tivoli®
WebSphere®
Workplace™
Workplace Forms™

The following terms are trademarks of other companies:

SAP, and SAP logos are trademarks or registered trademarks of SAP AG in Germany and in several other
countries.

Oracle, JD Edwards, PeopleSoft, and Siebel are registered trademarks of Oracle Corporation and/or its
affiliates.

Enterprise JavaBeans, EJB, Java, Java Filter, JavaBeans, JavaScript, JDBC, JDK, JSP, J2EE, J2SE, and all
Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other countries, or
both.

Microsoft, Visual Basic, Windows, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.
x SOA Architcture Handbook for z/OS

Draft Document for Review January 29, 2007 3:05 pm 7331pref.fm
Preface

Service Oriented Architecture (SOA) is a hot topic on the agenda of many CIOs,
architects and IT professionals. Most of us believe that SOA will truly make IT
more flexible and that time to market of IT solutions will improve significantly.

However, in many cases the bright and shining landscape of an SOA with all its
advantages is almost the opposite of today’s reality in many IT environments. IT
is too complex, too tightly integrated and therefore NOT flexible and the time to
market of IT changes as a result of changing business requirements is not
acceptable. Furthermore, technology is not in-place, and even more importantly,
the organization is many times not ready for an SOA.

Even though most of us believe in the advantages of an SOA, it remains a big
challenge to execute towards a full-blown implementation. In any case, when it
comes to implementation of an SOA, it will be done in steps. This Redbook is
about the possible approaches towards an SOA on z/OS® and the technology
options available. The book will help you to define an SOA strategy on z/OS and
decide on technology to be used in this journey.

The team that wrote this redbook
This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization, Poughkeepsie
Center.

Alex Louwe Kooijmans is a project leader with the International Technical
Support Organization (ITSO) in Poughkeepsie, NY, and specializes in
WebSphere®, Java™ and SOA on System z™ with a focus on integration,
security, high availability and application development. Previously he worked as a
Client IT Architect in the Financial Services sector with IBM® in The Netherlands,
advising financial services companies on IT issues such as software and
hardware strategy and on demand. Alex has also worked at the Technical
Marketing Competence Center for zSeries® and Linux® in Boeblingen,
Germany, providing support to customers starting up with Java and WebSphere
on zSeries. From 1997 to 2000, Alex completed a previous assignment with the
ITSO, managing various IBM Redbooks™ projects and delivering workshops
around the world.

Raymond Chiang
© Copyright IBM Corp. 2006. All rights reserved. xi

7331pref.fm Draft Document for Review January 29, 2007 3:05 pm
Irin Litman is a mainframe connectivity/networking specialist and IBM certified.
Irin is with IBM since 2003, working as mainframe connectivity specialist and as
IT Architect in outsourcing projects. Previously he worked 13 years for Deutsche
Bank in various roles (networking, mainframe connectivity, mainframe
e-business, architecture of IT systems). His areas of interest at the moment are
SOA and integration.

Mats Pettersson is a Senior IT Architect working in the Financial Services
Sector in Sweden. He has 23 years of IT experience, mostly focusing on
application development and systems integration. He has a broad technical
experience from working on different platforms, but also from using various
consulting methodologies, from business and IT alignment to implementation.

Bill Seubert is a Certified System z Software Architect in the United States. He
has over 20 years experience in mainframe and distributed computing, including
17 years at IBM as a Systems Engineer, Large Systems Specialist, and an
eBusiness Technical Specialist and developer. He holds a Bachelors of Science
degree in Computer Science from the University of Missouri--Columbia. His
areas of expertise include z/OS, WebSphere integration software, and software
architecture. Bill speaks frequently to IBM clients on the topics of System z
basics, application integration architecture and SOA, and Enterprise
Modernization. He also works with IBM's Academic Initiative in building and
teaching university courses for students new to the mainframe, and he has
presented on how IBM is helping revitalize the mainframe workforce. Bill lives in
St. Louis, Missouri but works with clients across the Americas.

Jens Erik Wendelboe is an IT Specialist in Strategy and Design and Service
Delivery in Denmark. He has 32 years of experience in most parts of z/OS. His
areas of expertise include WebSphere MQ and applications management. He
has written extensively on application design and roles in systems programming.

Thanks to the following people for their contributions to this project:

International Technical Support Organization, Poughkeepsie Center

Jonathan Adams
Distinguished Engineer, Project and Technical leader of the IBM Patterns for
e-business, IBM Software Group, IBM United Kingdom

Timothy Durniak
Development Center for Solution Integration (CSI), IBM Systems & Technology
Group, Poughkeepsie
xii SOA Architecture Handbook for z/OS

Draft Document for Review January 29, 2007 3:05 pm 7331pref.fm
James Goethals
System z9™ Industry Infrastructure Solutions Support, IBM Systems &
Technology Group, Raleigh

Mitch Green
IBM Washington Systems Center (WSC), IBM Systems & Technology Group,
Gaithersburg

Thomas J Hackett
Technical sales support, Service Oriented Architecture, IBM Systems &
Technology Group

Rick Robinson
Manager, EMEA Software Services Architecture Practice, Certified IT Architect,
IBM United Kingdom

Become a published author
Join us for a two- to six-week residency program! Help write an IBM Redbook
dealing with specific products or solutions, while getting hands-on experience
with leading-edge technologies. You'll have the opportunity to team with IBM
technical professionals, Business Partners, and Clients.

Your efforts will help increase product acceptance and customer satisfaction. As
a bonus, you'll develop a network of contacts in IBM development labs, and
increase your productivity and marketability.

Find out more about the residency program, browse the residency index, and
apply online at:

ibm.com/redbooks/residencies.html

Comments welcome
Your comments are important to us!

We want our Redbooks to be as helpful as possible. Send us your comments
about this or other Redbooks in one of the following ways:

� Use the online Contact us review redbook form found at:

ibm.com/redbooks

� Send your comments in an email to:

redbooks@us.ibm.com
 Preface xiii

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html

7331pref.fm Draft Document for Review January 29, 2007 3:05 pm
� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HYTD Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400
xiv SOA Architecture Handbook for z/OS

Draft Document for Review January 29, 2007 3:05 pm 7331ch01.fm
Chapter 1. Introduction

Most of us have come across the concepts and principes of Service Oriented
Architecture (SOA) by now and the benefits seem obvious, once an SOA has
been fully deployed. However, the main challenge is to reach a sufficient level of
SOA maturity so that the benefits really become visible. A little bit of SOA
enablement here and there may introduce new technology, but not really lead to
the main objectives of an SOA: a better alignment between business and IT,
more flexibility of the IT environment and thus a better time to market.

SOA requires an enterprise-wide vision and strategy and a broad acceptance by
the organization. Everybody in a company needs to be heading in the same
direction and every single activity needs to fit in the bigger picture.

Also, an SOA is the result of a transition process. Companies have many existing
applications and IT infrasructure and those will need to start playing their role in
an SOA, which is not an easy task to accomplish. Getting to an SOA is like
reconstructing a network of highways, without interrupting the traffic flow. A
transition plan must be in place with interim steps. This situation is especially tru
on the z/OS platform, as there are so many existing mission-critical applications
residing on z/OS.

As you can already see, this book focuses on SOA-enablement of existing IT
landscapes on z/OS, rather than on the “greenfields” approach, in which case
you just follow what you learned about SOA and implement it in a new
application. The real challenge is not to build a new application using SOA
principles, but incorporating existing applications into an SOA. The same is true

1

© Copyright IBM Corp. 2006. All rights reserved. 1

7331ch01.fm Draft Document for Review January 29, 2007 3:05 pm
for IT infrastructure. Building a new infrastructure using SOA principles is easier
than converting a fully operational one into an SOA-enabled one.

1.1 The approach in this book

In this book we focus on transition from an existing IT landscape on z/OS to an
SOA-enabled one. We have found ways to “organize” this transition in such a way
that the transition can be done in phases and that the right decisions can be
made regarding technology. The transition approach is depicted in Figure 1-1.

Figure 1-1 SOA transition process

We are using some terminology for the transition process:

Starting scenario Reflects the current state of technology used on
z/OS. The starting scenario influences which
transition approach has to be taken and which
solution techniques are possible.

Transition approach Determines the level of SOA maturity that will be
achieved.

Solution technique Technology option available to implement SOA
enablement.

Service interface pattern A certain way of interfacing with the newly
created services. The service interface pattern is
an architectural decision, but limits the solution
techniques available.

SOA target
landscape

Transition process

SOA solution
techniques

SOA starting scenario

Transition approaches

Service interface
patterns
2 SOA Architcture Handbook for z/OS

Draft Document for Review January 29, 2007 3:05 pm 7331ch01.fm
SOA Implementation scenario
The combination of a starting scenario, a
transition approach, a service interface pattern
and one or more solution techniques determine
the implementation scenario.

1.1.1 Starting scenarios

The starting scenarios are discussed in Chapter 3, “Starting scenarios” on
page 53. We have identified the most common scenarios on z/OS as follows:

� 3270 application.
Applications within this scenario typically include a 3270 style user interface
and all application components are run inside a transaction system such as
CICS® or IMS™. This scenario is further discussed in 3.1, “Starting scenario
- 3270 application” on page 55 and the applicable solution techniques are
discussed in detail in 5.2, “SOA implementation scenarios for 3270
application” on page 135.

� Multichannel.
Applications within this scenario include a middle tier capable of serving
multiple channels. The middle tier is typically implemented using J2EE™
technology and using a J2EE application server. This scenario is discussed in
detail in 3.2, “Starting scenario - multichannel” on page 62 and the applicable
solution techniques are discussed in detail in 5.3, “SOA implementation
scenarios for multichannel” on page 162.

� Batch.
Application functions implemented in batch can also become part of an SOA.
We discuss the batch scenario in further detail in 3.3, “Starting scenario -
batch” on page 71 and the applicable solution techniques are discussed in
detail in 5.4, “SOA implementation scenarios for batch” on page 183.

� Data integration.
In this scenario there is not really a lot of application logic, but rather tools and
technology to extract, load, aggregrate and integrate data from a variety of
data sources. We discuss this scenario in more detail in 3.4, “Starting
scenario - data access and integration” on page 78 and the applicable
solution techniques are discussed in detail in 5.5, “SOA implementation
scenarios - Data access and integration” on page 197.

� Homegrown SOA.
We consider a “homegrown SOA” as an IT environment in which some
principles of SOA have been implemented already. We discuss this scenario
in more detail in 3.5, “Starting scenario - Homegrown SOA” on page 87 and
the applicable solution techniques are discussed in detail in 5.6, “SOA
implementation scenarios for homegrown SOA” on page 213.
 Chapter 1. Introduction 3

7331ch01.fm Draft Document for Review January 29, 2007 3:05 pm
Of course, a combination of the above is possible.

1.1.2 Transition approaches

Depending on the level of SOA maturity that already exists and the SOA maturity
to be achieved the appropriate transition approach can be selected. For each
starting scenario (refer to the five starting scenarios mentioned in 1.1.1, “Starting
scenarios” on page 3) three different transition approaches are available:

Improve Aims at service enabling existing assets. Service
enablement means that assets get a new type of interface
that opens them up for service consumers. Depending on
the starting scenario and certain criteria a solution
technique can be chosen to achieve this. The improve
approach should not require any recoding or
redevelopment of applications. Also, the improve scenario
does not really implement an Enterprise Service Bus
(ESB) yet. The SOA maturity level achieved with this
approach is moderate and this approach should be seen
as an interim step towards the next phase.

Adapt In this approach the focus is on service integration. The
vehicle to achieve flexible service integration is the ESB.
Implementing an ESB will have some impact, both from a
technical and an organizational point of view. The SOA
maturity level achieved with this approach is higher and
will definitely lead to SOA benefits.

Innovate One of the biggest problems in existing assets is the level
of reusability. The ideal level of granularity for a certain
service may not match at all with any of the existing
assets. In that case code may need to be redeveloped or
“refactored” to make it better match the required service
granularity. After having followed the Innovate approach,
all assets should have a service interface, an ESB must
be present and the services are optimzed (meaning,
having the right granularity).

1.1.3 Solution techniques

For each combination of starting scenario and transition approach one or more
solution techniques are available. Solution techniques include a technology
solution that helps to achieve the goal of a specific phase of SOA enablement.

The solution techniques for the Improve transition approach focus on service
enablement, the solution techniques for the Adapt transition approach on service
4 SOA Architcture Handbook for z/OS

Draft Document for Review January 29, 2007 3:05 pm 7331ch01.fm
integration and the solution techniques for the Innovate approach focus on full
SOA enablement.

The solution techniques are discussed in Chapter 5, “SOA implementation
scenarios” on page 129 and categorized by starting scenario / transition
approach.

1.1.4 Service interface patterns

The service interface patterns are discussed in more detail in 4.3.2, “Service
interface patterns” on page 119. Each transition approach can be combined with
one or more service interface patterns.

1.2 The target audience for this book

This book is written from an architectural point of view and with focus on the z/OS
platform. However, a lot of the information provided is useful for non-z/OS
platforms as well.

If you are an architect or solution designer and you need to make decisions on
SOA-enablement or transition on the z/OS platform, this book is an excellent
starting point. It will provide you with patterns, transition approaches and features
and functions of the technology options available.

If you are a specialist and more interested in the technical details of the solutions
available, you may find some good starting points in this book. Note, however,
that this book is not a “handbook” or “cookbook”.

1.3 Objectives of this book

The objective of this book is to provide information that helps to make decisions
on transforming to an SOA on the z/OS platform.

� It helps you understand the traditional application landscape on z/OS and
what transition approach to take towards SOA.

� It helps you to select technologies to implement SOA.

� It provides a few case studies to illustrate what is possible.
 Chapter 1. Introduction 5

7331ch01.fm Draft Document for Review January 29, 2007 3:05 pm
1.4 How this book is organized

The chapters in this book are orgranized as follows:

� Chapter 2, “Target SOA architecture on z/OS” on page 7 explains the SOA
basics and how an ideal SOA on z/OS would look like. The chapter also
positions IBM software solutions to accomodate the implementation.

� Chapter 3, “Starting scenarios” on page 53 is an overview of the application
landscape as it currently exists on most z/OS systems. We have included this
overview for two reasons:

– It provides some good basic knowledge of the z/OS environment for those
architects that are not that familiar with z/OS.

– It provides a certain categorization of scenarios currently implemented
and those will determine what route should be taken towards SOA
enablement. For a 3270 application landscape another approach and
other solution techniques may have to be used than for a batch application
landscape.

� Chapter 4, “The SOA transition process” on page 95 discusses some topics
improtant to know before starting any SOA transition project. It discusses
methodologies, tools and patterns.

� Chapter 5, “SOA implementation scenarios” on page 129 is focusing on SOA
solutions and solution techniques. For each combination of starting scenario
and transition approach it will discuss available solution techniques.

� While the focus in Chapter 5, “SOA implementation scenarios” on page 129
has been on service enablement and some form of service integration,
Chapter 6, “Towards service integration and process integration” on page 219
goes into more detail on the Enterprise Service Bus (ESB), service
integration and process integration.

� Chapter 7, “SOA governance on z/OS” on page 257 is a chapter on an area
that gets more and more attention: SOA governance. Without proper
governance, an SOA may just become a one time shot and all benefits may
disappear over time.

� While in the first chapters of the book the focus has been primarily on
application architecture, Chapter 8, “SOA and z/OS QoS” on page 267 is
focusing on the Quality of Service (QoS) aspects of the z/OS platform in an
SOA. Those QoS will need to the accomodate the Non-Functional
Requirements (NFRs) of the overall solution.

� Finally, Chapter 9, “SOA enablement case studies” on page 321 contains two
case studies in which we apply some of the SOA theory. Both case studies
are based on real implementations.
6 SOA Architcture Handbook for z/OS

Draft Document for Review January 29, 2007 3:05 pm 7331ch02.fm
Chapter 2. Target SOA architecture on
z/OS

This chapter discusses the aspects of an SOA architecture on z/OS and
describes how such an architecture can be realized using products from the IBM
portfolio. We name it “target architecture” because we want to emphasize that
this is a recommended architecture, to be reached at the end of a chain of
transition stages. We describe in this chapter the end stage of the “SOA journey”.

2

© Copyright IBM Corp. 2006. All rights reserved. 7

7331ch02.fm Draft Document for Review January 29, 2007 3:05 pm
2.1 Overview

First, in 2.2, “The context” on page 8, we establish the context in which the whole
discussion and analysis takes place by describing the type of enterprise for
which we plan the ideal SOA architecture.

In 2.3, “SOA basics” on page 10 we discuss basic SOA concepts and
architectural principles and specify what we expect from such an architecture.

In 2.4, “IBM SOA reference architecture” on page 16 we describe the IBM SOA
reference architecture and go through the conceptual building blocks of the
reference architecture. After setting the stage for the SOA architecture we
identify, for each SOA building block, the available options and the way these
options are implemented in products on the z/OS platform.

In 2.5, “Criteria to determine whether the SOA has been implemented
succesfully” on page 23 we then establish a set of criteria with which we can
determine if a specific implementation option (that is, a specific combination of
IBM products with their features) satisfies the requirements of the IBM SOA
reference architecture.

In 2.6, “IBM options on z/OS platform for each building block of the SOA
reference architecture” on page 24 we provide a summary of IBM software
products available for each part of the IBM SOA reference architecture and in
2.7, “Analysis of the IBM products available for the SOA on z/OS” on page 27 we
mention the most important features of those products with regards to SOA.

At that point we will be in a position to identify a set of possible implementation
options for the z/OS platform (that means we have sets of products that, when
put together, implement the SOA reference architecture). We examine each
implementation option, describing the set of features made available by each. We
differentiate between the options and explain exactly where there are overlaps
and where there is missing functionality. The implementation options are
discussed in 2.8, “Implementation options for the SOA architecture on z/OS” on
page 41.

2.2 The context

In this section we describe the context in which the subsequent discussion will
take place. We assume that we are in an enterprise with the following
characteristics:

� It is a medium - to large enterprise, whose applications have evolved over
years; there is a mixture of applications (and types of data processing)
8 SOA Architcture Handbook for z/OS

Draft Document for Review January 29, 2007 3:05 pm 7331ch02.fm
encompassing all scenarios mentioned in Chapter 3, “Starting scenarios” on
page 53.

� The enterprise has numerous applications positioned on the z/OS platform,
but also applications positioned on the distributed platforms. These
applications were created at different points in time, independently of each
other, and they belong administratively to diffent departments in the
enterprise. Various clients access these applications, using different client
technologies.

� These applications interact (inside the z/OS platform, but also between z/OS
and the distributed platforms) through a variety of connectivity and
middleware options; WebSphere MQ is a predominant middleware, but
proprietary protocols abound, specifically in the client-server scenario.

� The applications were designed without the concept of service consumer /
service provider; the interaction between the applications (and also between
clients and applications) is not based on standards, but on the technologies
available at the time the applications were written.

� Most applications do not have a clear separation between the presentation,
business logic and data layer. There are a few exceptions, present in the
multichannel scenario (J2EE enablement), where this separation was
succesful.

� Real-time integration between applications is only partly done (for instance,
using the WebSphere MQ protocol). A lot of integration takes place through
daily or hourly FTP or batch jobs that exchange data between applications.
The Extract Transform Load (ETL) pattern is also used here.

� The applications do not appear as services for the most part; feeble attempts
have been made to implement multichannel-enabled applications and
“homegrown SOA” architectures.

In this context there are a lot of (maybe long-term) benefits that the organization
will reap by moving to an SOA architecture and consequently enabling the
applications as services.

For a detailed analysis of the benefits brought by an SOA architecture we
recommend the following documents:

� Hurwitz report: Thinking from Reuse -- SOA for Renewable Business

ftp://ftp.software.ibm.com/software/soa/pdf/IBMThinkingfromReuse.
pdf

� CBDI Whitepaper: Business Flexibility Through SOA

ftp://ftp.software.ibm.com/software/soa/pdf/CBDIWhitepaperBusines
sFlexibilityThroughSOA.pdf
 Chapter 2. Target SOA architecture on z/OS 9

7331ch02.fm Draft Document for Review January 29, 2007 3:05 pm
2.3 SOA basics

In th following sections we describe at a very high level some SOA basics
(definitions, services, design points, SOA lifecycle).

2.3.1 SOA basic concepts

Service Oriented Architecture (SOA) is a business-centric IT architectural
approach that supports integrating the business as linked, repeatable business
tasks, or services. SOA helps users build composite applications, which are
applications that draw upon functionality from multiple sources within and beyond
the enterprise to support horizontal business processes.

As a gross generalization, a service is a repeatable task within a business
process. After identifying the business processes, we identify within them the set
of tasks performed within the process, then we define these tasks as services
and the business process is then a composition of services. A number of
techniques have been devised to help you identify the appropriate granularity
and construction of services derived from the business design. The Service
Oriented Modeling and Analysis (SOMA) technique is such an approach.

From this definition of service, service orientation is a way of integrating the
business as a set of linked services. A Service Oriented Architecture, then, is an
architectural style for creating an enterprise IT architecture that exploits the
principles of service orientation to achieve a tighter relationship between the
business and the information systems that support the business. Finally, an SOA
based enterprise architecture will yield composite applications. A composite
application is a set of related and integrated services that support a business
process built on SOA.

2.3.2 SOA perspectives

From the perspective of the business, SOA is about modeling the business
(capturing the business design), and gaining insight from that effort to refine the
business design.

The Enterprise IT Architect will see SOA as being about two things, the style of
architecture and the set of principles that govern it.

� SOA describes a style of enterprise architecture that structures artifacts in the
information system as a set of services that can be composed to form other
services.

� SOA establishes a set of principles for loose coupling, modularity,
encapsulation, re-use and composability that will yield the flexibility needed to
10 SOA Architcture Handbook for z/OS

Draft Document for Review January 29, 2007 3:05 pm 7331ch02.fm
ensure the information system is able to keep up with the rate of change
demanded in the business design.

The Infrastructure IT Architect can gain value from SOA by exploiting the tools
and methodologies offered by SOA for automating the business design that
remains valuable to the business over time.

From the perspective of application programmers, SOA is a set of programming
models and tools for building, accessing and assembling services that implement
the business design together with a runtime that will execute those services
efficiently.

From the perspective of the operations staff, a benefit of SOA is that it enables
them to implement IT changes incrementally, replacing complex chains of
machine and software dependencies with modularized services that can be
substituted, tailored, modified, and deployed in a granular fashion over a
virtualized infrastructure.

Figure 2-1 SOA definitions

2.3.3 Defining a service

An SOA is an architectural approach to defining integration architectures that are
based on the concept of services. A service can be described as a function that
can be offered or provided to a consumer. This function can be an atomic
business function or part of a collection of business functions that are strung
together to form a process.

The most commonly agreed-on aspects of a service are that:

� Services encapsulate a reusable business function.

… a service ?

A repeatable business task – e.g.,
check customer credit; open new
account

… service orientation ?

A way of integrating your
business as linked services and
the outcome that they bring

… service oriented architecture
(SOA) ?

An IT architectural style that
support service orientation

… a composite application ?

A set of related and integrated
services that support a business
process built on SOA
 Chapter 2. Target SOA architecture on z/OS 11

7331ch02.fm Draft Document for Review January 29, 2007 3:05 pm
� Services are defined by explicit, implementation-independent interfaces.

� Services are invoked through communication protocols that stress location
transparency and interoperability.

Ideally, a service should be reusable and should be accessed by more than one
consumer, in other words by more than one system in the architecture. It is,
therefore, important to get the service description and reusability correct.

Services can be invoked independently by either external or internal service
consumers to process simple functions or can be chained together to form more
complex functionality or to devise new functionality quickly.

The SOA does not specify that the consumer need any specific protocol to have
access to a service. A key principle in SOA is that a service is not defined by the
communication protocol that it uses but instead, should be defined in a
protocol-independent way that allows different protocols to be used to access the
same service.

Ideally, a service should only be defined once, through a service interface, and
should have many implementations with different access protocols. More about
Service Identification in 4.1.1, “Service-Oriented Modeling and Architecture
(SOMA)” on page 96.

Loose vs tight coupling
The SOA architecture and many other documents refer to the concept of loose
coupling as opposed to tight coupling. But what exactly does this mean? Tight
coupling means that applications are highly dependent on each other:

� Dependencies are created when two or more resources are linked together
by requiring either a common platform, middleware or integration product.

� The use of inflexible message formats that cannot be changed without
impacting the resources that exchange the message.

� “Hard wiring” through coding of “connectivity” information inside the
applications

This “hard-wiring” of applications has its benefits:

� It is easier to perform security checking if each application knows the other.

� It is easy to fix a broken application because you always know where the
partner application resides.

� Using a tightly coupled application development approach provides certain
safeguards from a quality of service, security, privacy, data integrity, and
complex transaction processing perspective as compared to Web services
architecture.
12 SOA Architcture Handbook for z/OS

Draft Document for Review January 29, 2007 3:05 pm 7331ch02.fm
� Tightly coupled applications know how their partner applications behave (and
this implies an ability to ensure a reliable conversation between applications
as well as the ability to ensure performance characteristics to a certain
degree).

� Tightly coupled applications are inherently more easily managed (because
both endpoints are known).

But this “hard-wiring” has disadvantages too:

� Applications need to be told by a programmer how to find each other, how to
communicate with each other, and they also require long-term management /
repair.

� You spend a lot of time defining the connections and relationships between
cooperating applications.

� Agility is constrained as the virtualization of resources can be difficult to
achieve because the resource cannot be relocated without rebuilding all of its
hard-wired dependencies.

� Agility is constrained as the ability to change resources, or use an alternative
provider is reduced because of the tight coupling to the current resource
and/or its technology platform.

The principle of loose coupling is that dependencies between the service
consumer or requestor and the service provider are minimised to enable agility.

The benefits of the loosely coupled approach are:

� Building loosely coupled applications is simpler because developers do not
need to spend a lot of time defining where partner applications can be found
and defining the rules that allow them to communicate.

� Maintenance of loosely coupled applications may also be easier -- for
instance, should one side of a loosely coupled application break, a
replacement application can be sought dynamically and run automatically.

� Loose coupling of applications provides a level of flexibility and interoperability
that cannot be matched using traditional approaches.

The conclusions are:

� Tight coupling is comparatively complex and difficult, but is inherently reliable,
secure, and tunable. Tight coupling constrains the ability to adapt to changing
business and technology requirements.

� Loose coupling provides benefits such as dynamic lookup and
heterogeneous, cross-platform interoperability, but requires an architecture
and a software implementation for the security, reliability, manageability, and
other mission-critical purposes.
 Chapter 2. Target SOA architecture on z/OS 13

7331ch02.fm Draft Document for Review January 29, 2007 3:05 pm
The key benefit of loose coupling is agility. The service layer helps to isolate
change in the providing or requesting applications. For example, the frequency of
change in the business process, or the device and technology diversity used in
the requesting application might be more frequent than that in the core back end
systems that are used by the service provider.

In this chapter we concentrated on the building of an architecture for the loosely
coupled applications, in order to reap the benefits mentioned above, and
simultaneously keeping the Quality of Service benefits inherently available with a
tight coupled solution. In Chapter 5, “SOA implementation scenarios” on
page 129 we will see which kind of scenarios can be transformed in such a way
that the resulting environment is composed of loosely coupled services.

Service granularity
Coarse grained access defines the granularity in a service or component that
requires clients to make very few method invocations to get an business activity
done. For instance, if a typical client needs to update a single customer record, a
service based on coarse grained access would have the client update all
attributes of a customer in a single invocation. Either by passing all the items as
arguments to a procedure or by passing an entire customer object as the
argument. As a general rule, coarse grained access is a good idea with Web
services since it minimizes the number of network round trips.

The main down side to coarse grained access over fine grained access is that it
creates rigidity in how clients work with the service. For instance, if a client was
redesigned so that a single attribute of a customer is to be updated separately
the other attributes,then the client might still have to update the entire customer
when only one attribute has changed.

As a general rule, overly fine grained access should not be used as Web services
because each method invocation requires object marshalling and demarshalling.
This creates a great deal of computing and network overhead that can degrade
performance far more than the efficiency gained by sending a few small pieces of
data.

However, powerful counter examples of successful, reusable, fine grained
services exist. More realistically, there are many useful levels of service
granularity in most SOAs, as the following examples show:

� technical functions (such as logging)

� business functions (such as a service called getAddress)

� business transactions (such as orderStock)

� business processes (such as dailyTransactionSettlement)
14 SOA Architcture Handbook for z/OS

Draft Document for Review January 29, 2007 3:05 pm 7331ch02.fm
We can define, for example, the coarse grained service
dailyTransactionSettlement, which is a complex, long running service (might
be a batch oriented process). This service might be composed from several fine
grained services.

2.3.4 IBM SOA lifecycle

The SOA lifecycle is the framework of IBM's SOA strategy. As Figure 2-2 on
page 16 shows, the SOA lifecycle consists of four stages:

� Model
Use modeling tools to define the business process, at a business function
level, and model the actual services that will be part of an assembled,
composite application.

� Assemble
Assemble the individual services and write the code that is needed to
implement the business rules for the application. Services may be re-used, or
they may be developed new.

� Deploy
Deploy the services to run-time environments, such as transaction
management engines like WebSphere Application Server, CICS, IMS, and so
on. Use integration components - primarily an Enterprise Service Bus (ESB) -
to link together the various services needed for the composite application.

� Manage
Implement the management infrastructure for monitoring and managing the
services and the service infrastructure. This includes not only IT management
tools, but also business management and monitoring tools to measure actual
business activities.

� Governance
Ensure that the SOA is developed and maintained in the way we originally
intended it to be. A common problem in IT is that developers and project
teams deviate too easily from the architecture. The quality and benefits from
an SOA depends on the discipline that everybody has in following the defined
architecture.
 Chapter 2. Target SOA architecture on z/OS 15

7331ch02.fm Draft Document for Review January 29, 2007 3:05 pm
Figure 2-2 IBM SOA Lifecycle

2.4 IBM SOA reference architecture

The IBM SOA reference architecture presented in Figure 2-3 on page 17
includes building blocks that are used by the system and application architect to
position the infrastructure elements and the decomposed parts of the application
in a service-oriented way. In this section we describe these building blocks and
their role in the architecture.
16 SOA Architcture Handbook for z/OS

Draft Document for Review January 29, 2007 3:05 pm 7331ch02.fm
Figure 2-3 IBM SOA reference architecture

Referring to Figure 2-3, the building blocks are:

� Development Services

� Business Innovation and Optimization Services

� The Enterprise Service Bus (ESB)

� Interaction Services

� Process Services

� Information Services

� Access Services

� Partner Services

� Business Application Services

� Infrastructure Services

� IT Services Management Services

The boxes labeled Interaction Services, Process Services, Information Services,
Partner Services, Business Application Services and Access Services are the
parts in which we deploy application software to capture the domain logic specific
to the business design. The other parts of the architecture exist to assist the rest
of the SOA Lifecycle. We will use these other parts in the modeling of the

Business Innovation & Optimization Services

D
ev

el
op

m
en

t
Se

rv
ic

es

Integrated
environment
for design

and creation
of solution

assets

Manage
and secure
services,

applications
&

resources

Facilitates better decision-making
with real-time business information

IT
 S

er
vi

ce
M

an
ag

em
en

t

Infrastructure Services
Optimizes throughput,

availability and performance

ESBFacilitates communication between services

A
pp

s
&

In

fo
 A

ss
et

sPartner Services Business App Services Access Services

Connect with trading
partners

Build on a robust,
scaleable, and secure
services environment

Facilitates interactions
with existing information
and application assets

Interaction Services Process Services Information Services

Enables collaboration
between people,

processes & information

Orchestrate and
automate business

processes

Manages diverse
data and content in a

unified manner
 Chapter 2. Target SOA architecture on z/OS 17

7331ch02.fm Draft Document for Review January 29, 2007 3:05 pm
business design, construction and assembly of the software, deployment of the
applications, and management of the operational system and the implemented
business design.

There is a reason for the way in which these building blocks were positioned in
the diagram; the supporting functions (represented by Infrastructure Services, IT
Services Management, Deployment Services) are positioned on the borders of
the figure, surrounding with their functionality the “runtime” building blocks.

Let’s go and see in detail what the IBM SOA reference architecture defines for
these building blocks. Later on we will fill the blocks with the available IBM
implementation options.

2.4.1 Development Services

Development Services is an essential component of any comprehensive
integration architecture. These services enable different people, involved in the
development of a custom application, to develop the artifacts based on their
skills, their expertise, and their role within the enterprise.

� Business analysts analyze business process requirements using modeling
tools that allow processes to be charted and simulated.

� Software architects model the system structure and behavior.

� Integration specialists design specific inter-connections in the integration
solution.

� Programmers develop new business logic with little concern for the underlying
platform.

Development Services enable joint development, asset management and
collaboration among all these people. A common repository and functions
common across all the developer perspectives (e.g. version control functions,
project management functions, etc.) are provided through a unified development
platform

2.4.2 Business Innovation and Optimization Services

Business Innovation and Optimization Services provide monitoring capabilities
that aggregate the operational and process matrix in order to efficiently manage
systems and processes.

These capabilities are delivered through a set of comprehensive services that
collect and present both IT and process-level data. This allows business
dashboards, administrative dashboards, and other IT level displays to be used to
manage system resources and business processes.
18 SOA Architcture Handbook for z/OS

Draft Document for Review January 29, 2007 3:05 pm 7331ch02.fm
The important message here is that these services get insight not only into IT
processes, but also into the business processes, and so they can deliver not only
the traditional IT information, but also information about the business aspects of
the application.

Runtime data and statistics can be delivered, from Business Innovation and
Optimization services to Development Services. This allows analysis and an
iterative process of re-engineering.

2.4.3 The Enterprise Service Bus (ESB)

At the core of the SOA reference architecture is the Enterprise Service Bus
(ESB). This architectural construct delivers all the inter-connectivity capabilities
required to use (and re-use) services implemented across the entire architecture.
The ESB provides the following fundamental services:

� Transport Services providing the fundamental connection layer

� Event Services that allow the system to respond to specific events that are
part of a business process

� Mediation Services like transformation and validation services that allow
loose coupling between interacting services in the system

The Enterprise Service Bus (ESB) is a “silent partner” in the SOA logical
architecture. Its presence in the architecture is transparent to the services of your
SOA application. However, the presence of an ESB is fundamental to simplifying
the task of invoking services – making the use of services wherever they are
needed, independent of the details of locating those services and transporting
service requests across the network to invoke those services wherever they
reside within your enterprise.

The ESB enables the substitution of one service implementation by another with
no effect to the clients of that service (this is one of the most important point in
SOA design). This requires both the service interfaces that are specified by SOA
and that the ESB allows client code to invoke services in a manner that is
independent of the service location (location transparency), communication
protocol (transport neutrality) and interaction protocol.

The fact that the ESB is interposed between participants provide the opportunity
to modulate their interaction through a logical construct called a mediation. ESB
implementations offer basic mediation constructs like:

� Protocol switch
Its role is to transcode requests from one interaction protocol or API to
another.
 Chapter 2. Target SOA architecture on z/OS 19

7331ch02.fm Draft Document for Review January 29, 2007 3:05 pm
� Transform
Its role is to translate the message payload fom one schema to another; this
may include encryption.

� Enrich
Its role is to augment the message payload with external information.

� Route
Its role is to change the route of a message , selecting among service
providers based on selection criteria.

� Distribute
Its role is to distribute the message to a set of interested parties.

� Monitor
Its role is to oberve messages as they pass throgh mediation unchanged.
Can be used to monitor service levels, to support billing, and for auditing
purposes.

� Correlate
Its role is to derive complex events from message and event streams.

These basic mediation constructs can be combined to realize more complex
patterns, like the canonical adapter (protocol switch followed by a transformation)
or the “transform-log-route” mediation.

The ESB is not the only infrastructure component in an SOA. Although individual
scenarios vary, there are other commonly occurring components whose role we
should position relative to the ESB:

� The Business Service Directory, which provides the details of available
services to systems that participate in an SOA. In order to perform routing of
service interactions, the ESB obviously requires at least basic routing
information, which might be provided by an ESB Namespace Directory, or by
more simple means such as a routing table.

However, this routing information is not necessarily the same as the business
service directory SOA component; the role of the Business Service Directory
is to provide details of services that are available to perform business
functions. The Business Service Directory might be an open-standard UDDI
directory, or some other registry and repository construct.

Such implementations can achieve one of the primary goals of a Business
Service Directory: to publish the availability of services and encourage their
reuse across the development activity of an enterprise.

� Business Service Choreography, which is used to orchestrate sequences of
service interactions into short or long-lived business processes.
20 SOA Architcture Handbook for z/OS

Draft Document for Review January 29, 2007 3:05 pm 7331ch02.fm
� The ESB Gateway, which is used to provide a controlled point of external
access to services where the ESB does not provide this natively. Larger
organizations are likely to keep the ESB Gateway as a separate component.

An ESB Gateway can also be used to federate ESBs within an enterprise. For
more information on the ESB, see Keen et al. Patterns: Implementing an SOA
Using an Enterprise Service Bus, SG24-6346.

2.4.4 Interaction Services

Interaction Services are supporting the presentation logic of the business design
components that enable the interaction between applications and end users.
Interactions may be tailored to role-sensitive contexts, adjusting what is seen and
the behavior presented to the external world based on who the user is, what role
they are performing, and where they are in the world.

2.4.5 Process Services

Process Services provide the control and management services that allow
integration and automation of business processes that span people, workflows,
applications, different systems and platforms and meld them into single,
orchestrated application. Process services include various forms of
compositional logic, the most notable of which are business process flows and
business state machines (finite-state machines for business composition).

2.4.6 Information Services

Information Services provide the capabilities required to federate, replicate,
integrate, analyze and transform data sources. These services provide access to
the data repositories through various techniques such as accessing stored
procedures as Web services, providing standardized interfaces to non-relational
data repositories, and other access mechanisms that return information as a
Service.

2.4.7 Access Services

Access Services provide bridging capabilities between legacy applications,
pre-packaged applications and enterprise data stores. These access services
make available the functions and data of the existing enterprise applications as
services, thereby allowing them to be reused and incorporated (like other service
components) into functional flows that represent business processes.

This includes simple wrapping of those functions and rendering them as services
(in the case where the existing function is a good match with the semantic
 Chapter 2. Target SOA architecture on z/OS 21

7331ch02.fm Draft Document for Review January 29, 2007 3:05 pm
requirements of the business model in which it will be used), or in more complex
cases augmenting the logic of the existing function to better meet the needs of
the business design.

In the latter case, the access service may in fact invoke multiple legacy functions
to achieve the semantic requirements of the service.

2.4.8 Partner Services

In many enterprises business processes involve inter-actions with outside
partners and suppliers. Partner Services provide the document, protocol, and
partner management services required for business-to-business processes and
interactions.

In some ways partner services look like interaction services – projecting a view of
the business to the partners, and controlling the interaction with them as an
external entity. In other respects, partner services look like access services –
rendering the capabilities of that partner as a service so that those functions can
be composed into your business processes like any other service.

2.4.9 Business Application Services

Business Application Services implement the core business logic. These are
service components created specifically as services within a business model and
that represent the basic building blocks of your business design – services that
are not decomposable within the business model, but that can be composed to
form higher level services.

2.4.10 Infrastructure Services

Infrastructure Services provide functions for scalability and performance, security
and resource virtualization capabilities. These include the hardware and software
for deployment of the actual business services and service infrastructure. The
Infrastrucure Services component provides the required degree of Quality of
Service.

Many of the Infrastructure and IT Service Management services perform
functions tied directly to hardware or system implementations, others provide
functions that interact directly with integration services provided in other
elements of the architecture through the ESB. These interactions typically involve
services related to security, directory, and IT operational systems management.
22 SOA Architcture Handbook for z/OS

Draft Document for Review January 29, 2007 3:05 pm 7331ch02.fm
2.4.11 IT Services Management Services

IT Services Management Services provide security, directory, IT system
management, service level automation and orchestration, and virtualization
functions. The infrastructure required to support an SOA and the applications
cooperating in an SOA are typically dispersed over several platforms and
technologies, and is therefore significantly more complex than traditional
infrastructure necessary for ’self-contained’ applications.

SOA Management can be thought of in three layers:

� Business Service Management provides for service level planning, business
impact monitoring, and prioritization of event management

� Composite Application Management provides support for securing the SOA
environment, flow content analysis, end-user response time monitoring for
service requests, service problem diagnosis, and application trace
information that you can then pass back to your development environment

� Resource Management enables orchestration, provisioning, infrastructure
health monitoring, and event automation.

2.5 Criteria to determine whether the SOA has been
implemented succesfully

The criteria used in determining whether the implemented architecture in an
enterprise is an SOA, are derived from the SOA benefits. There are different
degrees of SOA compliance, but since we are attempting to describe ‘ideal”
implementations we will look at the criteria for a “state of the art” SOA
implementation. Also refer to Chapter 4, “The SOA transition process” on
page 95 and especially 4.1, “Methodologies for analyzing the business and
application environment” on page 96.

Each complete SOA implementation option should allow:

� Modeling, construction, deployment (in the runtime instances) and
management of service components . This means having an integrated set of
tools and runtimes that allow the consequent implementation of the SOA
lifecycle.

� Positioning the services as loosely coupled, reusable and composeable
elements. This means using connection and calling mechanisms between
services, with clearly described interfaces (that use non-proprietary,
recognized standards). This means we can replace components at will,
provided they respect the defined interface. This also means having available
tools for composing applications by putting together services and describing
 Chapter 2. Target SOA architecture on z/OS 23

7331ch02.fm Draft Document for Review January 29, 2007 3:05 pm
the business flow using these services; for running the “composed”
application (processes) we need a runtime able to reach the service providers
and run the business logic.

� Location transparency. This means we should have in our SOA
implementation the service directory component that allows the discovery of
the services, their calling methods and quality of services.

� Transport neutrality. This means that the implementation should allow the
services to be “called” in standardized ways, without associating them (or
restricting them) to any specific transport protocol. This also means we need
mediations and transformation services that will allow service consumers to
call service providers, even if they implement different protocols.

� The possibility to attach, find and use internal and external legacy and
packaged applications as coarse grained services, through the use of
adapters, gateways and other artifacts.

� The possibility to attach, find and use “information as service” components,
as well as other future components (through easy implemented extensions).

� The possibility to manage the deployed services, both from a traditional IT
view but also from a business oriented view, allowing us an insight into the
composite application.

Now that we defined the criteria for SOA, we move on a “SOA Journey” to
achieve them. This journey will (in almost all cases) take place in steps, moving
from different stages of service enablement, to several stages of service
integration and lastly into several stages of process integration. Therefore the
path to the “ideal” SOA architecture will be a succession of steps, a combination
of positioning SOA infrastructure products and SOA-enablement of applications.
The speed and the depth of the implementations are, as always, based on the
exact enterprise landscape and, most important, of the requirements of the
enterprise.

In the next section we show what the actual IBM products are for each building
block of the SOA reference architecture.

2.6 IBM options on z/OS platform for each building
block of the SOA reference architecture

In the following section we show the IBM implementation options (set of
products) that are available on the z/OS platform. We position the products over
the building blocks of the SOA reference architecture, and present an overview of
the delivered functionality.
24 SOA Architcture Handbook for z/OS

Draft Document for Review January 29, 2007 3:05 pm 7331ch02.fm
Figure 2-4 shows the available IBM products on the z/OS platform, and their
positioning in the IBM SOA reference architecture.

Figure 2-4 IBM SOA reference architecture and the IBM products on z/OS

2.6.1 Infrastructure Services

Here we see all IBM hardware and software features (either implemented as
hardware features of the System z platform, or in the z/OS operating system, or
in the Websphere products on z/OS). These are the hardware and O/S features
that allow the implementation of the desired QoS levels for availability (Parallel
Sysplex®), performance and optimization (Workload manager, specific usage of
the processors, such as zAAP, zIIP and IFL, WebSphere XD), security and
transactional capabilities (RRS).

2.6.2 Development Services

In this area we position among others the WebSphere Business Modeler, the
Rational® development tools and the WebSphere Integration Developer
products. These are the tools that allow the developer to construct the service
artifacts, to define their interfaces, integrate the services in process flows, and
deploy them in the runtimes.
 Chapter 2. Target SOA architecture on z/OS 25

7331ch02.fm Draft Document for Review January 29, 2007 3:05 pm
2.6.3 IT Services Management Services

In this area we position products like IBM Tivoli Composite Application Monitor,
the Tivoli® Omegamon family and Tivoli security products, such as Tivoli Access
Manager (TAM). These are supporting products that are neccessary in order to
get insight into the different SOA layers (operational systems, service
components, services, business processes).

2.6.4 Business Innovation and Optimization Services

In this area we see products such as Websphere Business Modeler and
Websphere Business Monitor. These products are necessary when we have
already created services, deployed them, and now wish to construct and deploy
composite applications and process flows.

2.6.5 Interaction Services

In this area we position the WebSphere Portal and the Workplace™ WebSphere
Everyplace® products. These products can be used when the enterprise comes
to the point of integrating the user interfaces into a unified presentation, and
allowing the user interfaces flexible access to information and services.

2.6.6 Process Services

In this area we see the WebSphere Process Server (WPS) product. This product
will be used when the enterprise disposes of a sufficient number of services and
start combining them into process flows, positioning the business rules in these
flows and therefore outside the business logic component.

2.6.7 Information Services

In this area we see the IBM products that allow access to data, like DB2®, IMS
DB, as well as products that provide the “information as a service” functionality
like Websphere Information Integrator.

2.6.8 Partner Services

In this area we position the WebSphere Partner Gateway product. This product
will be used at the point where the enterprise wants to access service
components located at the partners, or would like to make available its services
to the partners. Usually this happens after the infrastructure for the Enterprise
Service Bus has been positioned.
26 SOA Architcture Handbook for z/OS

Draft Document for Review January 29, 2007 3:05 pm 7331ch02.fm
2.6.9 Business Application Services

In this area we see products that run the services that implement business logic.
These products include Websphere Application Server (WAS), CICS Transaction
Server and IMS Transaction Manager.

2.6.10 Access Services

Here we see the IBM products that allow access to legacy applications, like
Websphere Adapters, Host Aaccess Transformation Services (HATS) and
Websphere IICF. These products can be implemented when the enterprise
decides to service-enable legacy applications. Later on, through the use of an
ESB, the service-enabled legacy applications can be reused by new composite
applications.

2.6.11 Enterprise Service Bus (ESB)

In this area we position WebSphere ESB (WESB) and Websphere Message Broker
(WMB) products. The ESB is a central component in any SOA implementation,
and the positioning might be necessary as soon as the enterprise has a need for
“reusing” services (and in the process having the need for mediations,
transformation, routing, protocol independence, location transparency, etc).

2.7 Analysis of the IBM products available for the SOA
on z/OS

Now that we know what IBM products are available for each building block, it is
the right time to determine the features implemented by them. But we are not
going to present a “data sheet” for all the products involved; instead, we will show
how specific features are there for a purpose, namely to implement SOA
architecture requirements.

We will concentrate only on the features that are related to SOA, that means all
features that were built into the products with the purpose of enhancing the QoS
of the architecture or enable the SOA features.

IBM is following an obvious strategy in regard to the z/OS products for the SOA
reference architecture. One of the activities is to go over all the building blocks,
identify the products that play a role in that area, and SOA enable them. This
means:

� If the product is a development tool, it is enhanced with the ability of
producing SOA components to run on z/OS runtimes and the ability of
 Chapter 2. Target SOA architecture on z/OS 27

7331ch02.fm Draft Document for Review January 29, 2007 3:05 pm
SOA-enabling existing components. For example, WebSphere Developer for z
(WDz) is producing fully SOA-enabled business components to run in
WebSphere Application Server, CICS TS, IMS TM and DB2. It produces all
the necessary artifacts needed (either for the provider or for the consumer).
WebSphere Developer for z is also able to enable existing components like
Java Beans, CICS and IMS transactions, DB2 stored procedures. These
artifacts might be WS-Binding files, SOAP proxies, presentation components,
portlets, etc. The development tools provide all these features in an integrated
way, ecompassing the whole cycle of application development.
Another example of a development tool is WebSphere Integration Developer
(WID), whcih can be used to produce process flows that in turn are able to
call new or existing SOA components.
The development tools are also enabled to deploy the components on the
runtimes.

� If the product is a runtime for business logic, then IBM makes sure it is
sufficiently enhanced (or provides a new product) so that it is able to run SOA
components. For example, WebSphere Application Server is able to run
SOA-enabled components (Web services). This is also valid for CICS
Transaction Server. When the products are not directly supporting Web
services, IBM delivers additional tools, wrappers, adapters or gateways that
allow existing components to be used as SOA services.
WebSphere Process Server is an example of a new runtime which was
provided specifically to run processes.

� The development and runtime products are constantly enhanced by
implementing the standards as they stabilise (for example the set of WS-*
standards in the area of Web services). IBM ensures consistency in the
support of the Web Services standards across the products, and therefore
their interoperability, and interoperability with other software implementations.

� The runtimes are constanly enhanced to support a variation of transports,
interaction patterns, languages used for development, etc. This is done to
increase flexibility and allow the developers freedom of decision about many
aspects of the implementation, but still ensure the services fit in the SOA
architecture.

� For some of the SOA building blocks (like the ESB) IBM delivers several
options in order to better fullfil the market requirements. The available options
are described in Chapter 6, “Towards service integration and process
integration” on page 219. Depending on the enterprise requirements, IBM
recommends either the new WebSphere ESB product or the enhanced
WebSphere Message Broker product.

� If the product is for information services, then IBM enhances it to allow the
conept of “information as service”. More information about this subject is
available in 5.5, “SOA implementation scenarios - Data access and
integration” on page 197.
28 SOA Architcture Handbook for z/OS

Draft Document for Review January 29, 2007 3:05 pm 7331ch02.fm
� If the product belongs to interactive access (like WebSphere Portal), IBM
enables it to be able to participate in the SOA architecture. This means
adding features that allow portlets to consume SOA components.

� IBM enhances existing management products and delivers new ones in order
to be able to manage the whole lifecycle of the SOA components. Each
runtime is impoved in such a way that the Tivoli management tools are able to
see “inside” and manage the SOA service component

Other IBM activities make the platform z/OS more attractive for the enterprises.
The enhancements go into putting more functionality and standards into the
products running on z/OS, improving the QoS of the platform, and reducing the
Total Cost of Ownership. The TCO reduction is implemented by means of, for
example, the usage of zAAP processors, performance improvements in the
runtimes, virtualisation and many others.

We will not discuss here the development tools (which are presented in 4.2,
“Tools to assist in the SOA transformation process” on page 108), but
concentrate mostly on the runtimes.

2.7.1 WebSphere Application Server for z/OS

This section discusses the most important features of WebSphere Application
Server for z/OS Version 6.1, that directly benefit the SOA.

Core features that increase the reusability and service
integration

� WebSphere Application Server for z/OS, V6.1 supports Session Initiation
Protocol (SIP) servlets - voice clients added as SOA participants.

� Web Services Gateway enables Web services invocation by users from inside
and outside the firewall with the benefit of robust security protection and a
centralized point of control.

� New Web services standards including WS-Business Activity, WS-Notification
and WS-I Basic Security Profile are supported.

� A powerful built-in JMS engine helps extend the reach of new and existing
applications. A JMS service consumer can participate directly in the SOA.

� Extensive Web services support and close proximity to core mainframe
assets allow easy reuse and development of composite applications.

Note: Note that WebSphere Application Server for z/OS provides much more
functionaltiy than the features mentioned above. We only concentrate on Web
services related features in this section.
 Chapter 2. Target SOA architecture on z/OS 29

7331ch02.fm Draft Document for Review January 29, 2007 3:05 pm
Features that implement QoS
� As a fully participating member of a Parallel Sysplex, WebSphere Application

Server for z/OS delivers features such as a High Availability Manager and
backup cluster support.

� The unified clustering framework has been enhanced to provide Web
services and Session Initiation Protocol (SIP) servlet clustering capabilities.

� Out-of-the-box security configurations and user registry, compliance with
government standards, and stringent Web services security.

� High throughput and scalability with JDK™ 5 enhancements and improved
cache off-loading.

� Leverages local connections to DB2 Universal Database™ for z/OS which
eliminate unnecessary path length and significantly improve performance.

� Unique architecture that derives significant value from integration with z/OS
WLM, which enables a flexible deployment environment.

2.7.2 WebSphere Portal

This section discusses the most important features of WebSphere Portal Enable
for z/OS, Version 6.0, that directly benefit the SOA.

Core features that increase the reusability and service
integration

� IBM WebSphere Portal delivers a complete set of capabilities that enable the
assembly and orchestration of presentation components.

� WebSphere Portal supports JSR 168, a standard Application Programming
Interface (API) for creating portlets as the integration component between
applications and portals on a J2EE platform.

Note: We just mentioned some highlights related to the QoS supported in
WAS for z/OS. There is much more to say about QoS in WAS for z/OS, but
would require a book by itself. Refer to other Redbook and Redpaper
publications in the area of WebSphere Application Server for z/OS for more
information on QoS, such as security, availability and integration.

Important: At the time of writing, WebSphere Portal Enable for z/OS, Version
6.0 has been announced. More information, including the announcement letter
can be found at url:

http://www.ibm.com/software/genservers/portalzos/index.html?S_TAC
T=103BGW01&S_CMP=campaig
30 SOA Architcture Handbook for z/OS

Draft Document for Review January 29, 2007 3:05 pm 7331ch02.fm
� WebSphere Portal supports the Web Services for Remote Portlets (WSRP)
standard, for dynamically integrating business applications.

� WebSphere Portal also fully leverages IBM WebSphere Host Access
Transformation Services (HATS) to quickly and easily extend legacy
applications into a portal via reusable portlets.

� Orchestration supported through Human Task List (BPEL) and cooperative
portlets.

2.7.3 WebSphere Process Server

This section discusses the most important features of WebSphere Process
Server for z/OS Version 6.0, that directly benefit the SOA.

Core features that increase the reusability and service
integration

� Support for Web services - SOAP/HTTP, SOAP/JMS, WSDL 1.1, WS-*
Standards including WS-Security and WS-Atomic Transactions.

� Support for a variety of messaging protocols including JMS 1.1, WebSphere
MQ, TCP/IP, SSL, HTTP(S), and multicast for optimum flexibility and
improved asset reuse (more ways to interact between service consumers and
service providers).

� Standards-based connectivity to integrate applications and services.

� Easy interoperability with WebSphere Family - WebSphere Application
Server, WebSphere MQ, WebSphere Message Broker.

� Messaging services for clients running in non-Java applications in C/C++ and
Microsoft® .NET environments. The Web services Client is a JAX-RPC-like
Web services client for C++ that enables users to connect to Web services
hosted on WebSphere from a C++ environment.

� Java 2 Platform Enterprise Edition (J2EE) Connector Architecture (JCA)
Version 1.0 and Version 1.5 resource adapters to access back-end systems.

� Support for the entire suite of IBM WebSphere Business Integration Adapters
Support for Web services.

� Support for JMS through integrated WebSphere messaging resources (with
full connectivity to existing IBM WebSphere MQ technology-based networks).

Note: WebSphere Portal Enable for z/OS, Version 6.0 provides much more
functionality than the highlights mentioned above. A Redbook is planned to be
published in 2007 with more detailed information WebSphere Portal for z/OS.
 Chapter 2. Target SOA architecture on z/OS 31

7331ch02.fm Draft Document for Review January 29, 2007 3:05 pm
� Support for Web services (based on Java Specification Request [JSR] 109
and Java application programming interface (API) for XML (JAX)-RPC
technology).

� Support for calling Enterprise JavaBeans™ (EJB™) session beans.

� Support for exposing and calling IBM CICS or IBM IMS programs as
enterprise services.

Features that implement the “loosely coupled” concept

� Built on WebSphere Enterprise Service Bus (WESB) for service-oriented
integration (therefore inherits the already available service integration).

� WebSphere Process Server handles the integration logic, transformations,
routing, rules.

� Dynamic business processes are supported.

� Visually description of processes that span people, systems, applications,
tasks, rules, and the interactions among them

� Supports long- and short-running business processes.

� Integrates fault handling for easy, in-flow exception handling.

� WebSphere Process Server contains a business-rule component that
provides support for rule sets ("if-then" rules) and decision tables. Business
rules are categorized into rule groups which hide implementation details from
the consumer and which are accessed just like any other component.

Features that implement QoS
� Support for transactions involving multiple resource managers using the

two-phase commit process. This capability is available for both short-running
processes (single transaction) and long-running processes (multiple
transactions).

� Multiple steps in a business process can be configured into one transaction
by modifying transaction boundaries in WebSphere Integration Developer
(WID), then deployed into Websphere Process server.

� Provides transaction rollback-like functionality for loosely coupled business
processes that cannot be undone automatically by the application server.

2.7.4 Websphere ESB

This section discusses the most important features of WebSphere Enterprise
Service Bus for z/OS Version 6.0, that directly benefit the SOA.
32 SOA Architcture Handbook for z/OS

Draft Document for Review January 29, 2007 3:05 pm 7331ch02.fm
Core features that increase the reusability and service
integration

� Support for a variety of messaging protocols including JMS 1.1, WebSphere
MQ, TCP/IP, SSL, HTTP(S), and multicast for optimum flexibility and
improved asset reuse (more service consumer and service provider can
participate).

� Utilize a broad range of interaction models (request/reply, point-to-point,
publish/subscribe and multicast).

� Leverage advanced Web services support to incorporate SOAP/HTTP,
SOAP/JMS, WSDL 1.1, Web Services Gateway. WebSphere ESB supports
WS-* Standards including WS-Security, WS-Atomic Transactions and
includes a UDDI 3.0 Registry that can be used to publish and manage service
end point metadata.

� Message Service Client for C/C++ extends the JMS model for messaging to
non-Java applications.

� Message Service Client for .NET enables legacy or .NET applications to
participate in JMS-based information flows (additional service consumers).

� Web Services Client is a JAX-RPC-like Web services client for C++ to
enables users to connect to Web services hosted on WebSphere from within
a C++ environment.

� J2EE client support from WebSphere Application Server, including Web
services Client, EJB Client, and JMS Client.

Features that implement the “loosely coupled” concept

� Websphere ESB will handle the integration logic, transformations, routing and
rules.

� Customized routing - Transport/protocol specific routing and content based
routing.

� Protocol transformation between a variety of protocols: HTTP, IIOP, JMS.

� Format transformation between standards: XML, SOAP, JMS messages, and
many more when used with adapters.

� Supplied mediation function for database interaction.

� Support for message logging to database and message augmentation by
database lookup.

� Administrator support for reconfiguring service interactions.

� Avoid system downtime by adding or replacing integration logic dynamically.
 Chapter 2. Target SOA architecture on z/OS 33

7331ch02.fm Draft Document for Review January 29, 2007 3:05 pm
Features that implement QoS
� Inherits from WebSphere runtime the scalability, clustering, and fail-over

capabilities.

� Utilizes common WebSphere Administrative Console to enable system
management across WebSphere Application Server, WebSphere ESB, and
WebSphere Process Server.

� Support for global transactions. A global transaction is required when
mediating and routing messages must be coordinated into a single
transaction, or when several mediation handlers in a mediation handler list
must be coordinated into a single transaction. Setting the global transaction
property ensures transactional integrity between a mediation that accesses
the resources owned by other resource managers, and the messaging
engine.

� Addresses end-to-end security requirements on authentication, resource
access control, data integrity, confidentiality, privacy, and secure
interoperability (SCA security and message level security on top of the
security features delivered by WebSphere Application Server, Java, and the
z/OS platform).

� Integrates tightly with IBM Tivoli security, directory, and systems management
offerings (Tivoli access manager, Tivoli directory, Tivoli Composite Application
Manager for SOA).

2.7.5 Websphere Message Broker

This section discusses the most important features of WebSphere Message
Broker for z/OS Version 6, that directly benefit the SOA.

Core features that increase the reusability and service
integration

� Numerous connectivity options allow practically each service to attach to the
Message Broker.

� Integrated WebSphere MQ transports - for Enterprise, Mobile, Real-Time,
Multicast and Telemetry end points - extend the scope of client types.

� Provide native JMS interoperability, acting as a bridge between any
combination of different JMS providers.
34 SOA Architcture Handbook for z/OS

Draft Document for Review January 29, 2007 3:05 pm 7331ch02.fm
Features that implement the “loosely coupled” concept

� WebSphere Message Broker handles the integration logic, transformations,
routing and rules.

� Distribute any type of information across and between multiple diverse
systems and applications.

� Reduce the number of point-to-point interconnections and simplify application
programming by removing integration logic from the applications.

� Validate and transform messages in-flight between any combination of
different message formats, including Web Services, other XML and non-XML
formats.

� Route messages based on (evaluated) business rules to match information
content and business processes.

� Dynamically reconfigure information distribution patterns without
reprogramming end-point applications.

� Mediates (provides routing, transformation and logging) between Web
Service requesters and providers.

� Mediates between Web Services and other integration models as both a
service requester and a service provider.

Features that implement QoS
� Option to use Java for processing and transformation allows for off-loading of

this function onto zAAP processors for System z implementation.

� WebSphere Message Broker supports both WebSphere MQ queue sharing
and queue clustering. WebSphere MQ queue sharing is a unique concept for
high availability only available on z/OS.

2.7.6 WebSphere Service Registry and Repository

This section discusses the most important features of WebSphere Service
Registry and Repository (WSRR), that directly benefit the SOA. Note that, at the
time of writing, WSRR is not available on z/OS.

Note: WebSphere Message Broker for z/OS Version 6 offers a full range of
ESB functions. It is beyond the scope of this book to discuss them all in detail.
Refer to 6.3, “Stage two - “Service Integration”” on page 223 for more
information on the ESB and the role of WebSphere Message Broker for z/OS.
Also refer to Implementing an Advanced ESB using WMB V6 and WESB V6 on
z/OS, SG24-7335.
 Chapter 2. Target SOA architecture on z/OS 35

7331ch02.fm Draft Document for Review January 29, 2007 3:05 pm
Core features that improve the reusability and service
integration

� Enables the publication, discovery, subscription, and governance of services.
The registry component records the definition of the services (what they offer)
and where they are located. In addition, the repository covers details such as
how the services are used, by whom, and why.

� Enables dynamically finding the service based on the description of the
intefaces and QoS requirements

2.7.7 WebSphere Host Access Transformation Services

This section discusses the most important features of WebSphere Host Access
Transformation Services (HATS), that directly benefit the SOA.

Features that enable existing applications as services /
creation of new services

� Provides programmed access to 3270 host transactions through standard
Web services interfaces.

� Combines data selected from multiple host sources with Java
technology-based applications to create new WebSphere applications. You
can encapsulate transactions with host systems into reusable business
objects, such as Web services, Java beans or Enterprise JavaBeans (EJB).

Features that increase the reusability and service integration

� HATS can run directly in the WebSphere Portal environment and take
advantage of integration with other portlets in the portal, so the portlets can
become service consumers of 3270 SOA-enabled applications.

Features that implement QoS
� Leverages the security-rich features provided by IBM WebSphere Application

Server and IBM WebSphere Portal. Secure Sockets Layer (SSL) and Secure
HTTP (HTTPS) provide robust security between the host application, the
mid-tier server and the end user.

Attention: At the time of writing WSRR was not available yet for the z/OS
platform. The announcement, however, can be found:

http://www.ibm.com/fcgi-bin/common/ssi/ssialias?infotype=an&subty
pe=ca&appname=Demonstration&htmlfid=897/ENUS206-315
36 SOA Architcture Handbook for z/OS

Draft Document for Review January 29, 2007 3:05 pm 7331ch02.fm
2.7.8 CICS Transaction Server

This section discusses the most important features of CICS Transaction Server
Version 3.1, that directly benefit the SOA.

Core features that improve the reusability and service
integration

� CICS is capable of being a Web Service provider and consumer through a
variety of native (CICS Web services support) and adapter (CICS Transaction
Gateway) technologies. This dual provider/consumer role means that CICS is
now a full participant in the B2B and B2C world of e-portals and
e-marketplaces.

� CICS supports Web services sent over the HTTP and WebSphere MQ
transports for flexible deployment options dependant on the requirement of
applications.

� CICS supports SOAP-enablement features like Link3270 bridge, JCA,
Service Flow Modeler (SFM1) and the Service Flow Runtime (SFR). The
Service Flow Modeler can be used to model the flow between CICS services,
create interactions with CICS applications and expose the flow as a Web
Service. The Service Flow Runtime contains adapters and other supporting
code that allow the flow to run. SFM and SFR are presented in “Variation 2:
CICS Service Flow Feature (CICS Transaction Server V3.1)” on page 139.

� CICS TS V3.1 supports new technical constructs such as pipelines and
handlers, which enable the processing of the headers the SOAP messages
and therefore allow the implementation of the WS-* specifications.

� CICS TS V1.3 supports the following specifications: SOAP 1.1 and 1.2, WS-I
Basic Profile 1.1, WS-Security (SOAP message security), WS-Coordination,
WS-AtomicTransaction.

� CICS TS V3.1 supports new technical constructs such as channels and
containers, that on one hand improve features for the business logic
(enhanced CICS data exchange), on the other hand form the infrastructure
basis for the SOAP/Web services artifacts.

� CICS TS V3.1 supports transactions written in Java, enabling more flexibility
for the implementation of the service providers.

� Web services tooling is available for creating a Web service out of an existing
program (bottom-up) or creating a program based on available WSDL
(top-down).

1 The Service Flow Modeler (SFM) is part of the WebSphere Developer for z product.
 Chapter 2. Target SOA architecture on z/OS 37

7331ch02.fm Draft Document for Review January 29, 2007 3:05 pm
2.7.9 IMS Transaction Manager

This section discusses the most important features of IMS Transaction Manager ,
that directly benefit the SOA.

Core features that improve the reusability and service
integration

� IMS is capable of being a Web service provider through IMS SOAP Gateway
and other access components.

� Integrated Connect XML Adapter support for COBOL enables reuse of IMS
applications as Web services.

� IMS calllout enables IMS applications as clients to interoperate with business
logic outside of the IMS environment (e.g. Web service or J2EE application).

� IMS SOA Composite Business application support enables integration of IMS
transactions in SOA-based composite business applications.

� MFS Web support enables access to existing IMS MFS based transactions
from WebSphere Application Server. Refer to “Variation 3: IMS using MFS
Web Support” on page 141 for more details.

� IMS Connector for Java PL/I application support alows IMS transactions to
be enabled as Web services without IMS application changes.

2.7.10 DB2

This section discusses the most important features of DB2 for z/OS, that directly
benefit the SOA.

Core features that improve the reusability and service
integration

� DB2 can act as service provider through the Web services Object Runtime
Framework (WORF), which runs in WebSphere Application Server.

Important: Most of the features mentioned below will become available in IMS
V10. The announcement letter can be found at:

http://www.ibm.com/common/ssi/fcgi-bin/ssialias?subtype=ca&infoty
pe=an&appname=iSource&supplier=897&letternum=ENUS206-238

The IMS SOAP Gateway and MFS Web support are available in IMS V9 too.
38 SOA Architcture Handbook for z/OS

Draft Document for Review January 29, 2007 3:05 pm 7331ch02.fm
� DB2 can act as service consumer, using DB2 User Defined Functions
(UDFs). Optionally, the DB2 XML extender can be used to parse the results
from an incoming SOAP message.

� DB2 supports native XML and XQuery processes that access XML. The
XQuery modules can be used as SOA bindings in Web services that run in
WebSphere Application Server. This means that we have an additional
possibility to reach data stored in DB2.

� DB2 can also be accesed by PHP Web services deployed in WebSphere
Application Server, through the “Zend Core for IBM” package. Zend Core for
IBM is a certified PHP development and production environment that includes
tight integration with the DB2 family of database servers, and native support
for XML and Web services. For more information, including usage scenarios,
please consult:

Redbook Powering SOA with IBM Data Servers, SG24725

Features that implement QoS for the SOA architecture
� The positioning of WORF inside the WebSphere Application server enables

DB2 service providers to take full advantage of the QoS offered by WAS.

2.7.11 SOA systems management on z/OS

A service has not only a set of calls and responses, it has many other
characteristics such as performance, availability, capacity, security (all together
considered under the label “Quality of Service” or “QoS”). SOA is not only
exposing how to call a service, but also defining a set of characteristics for how
the calls will be serviced:

� How fast should the service respond (according to SLA)?

� When will the service be available (according to SLA)?

� Who may make calls to the service (authentication, authorisation)?

� How many calls can be done in a certain period of time (performance,
capacity)?

� What calls must be logged and which attributes (security)?

� How should calls be routed (capacity)?

Figure 2-5 on page 40 shows the integrated SOA management view, which is
exactly what we need. It is a group of Tivoli products that delve into the different
layers of the SOA architecture and coordinate the information extracted, allowing
for the management of the SOA infrastructure and of the services that run on the
infrastructure.
 Chapter 2. Target SOA architecture on z/OS 39

7331ch02.fm Draft Document for Review January 29, 2007 3:05 pm
Figure 2-5 Integrated SOA management with IBM Tivoli on z/OS - a complete view

Figure 2-6 shows the Tivoli products mapped on the SOA reference architecture:

Figure 2-6 Mapping of IBM Tivoli products to the SOA reference architecture

Services
atomic and composite

Operational Systems

Service Components

Consumers

Business Processes
process choreography

Service Provider
Service C

onsum
er

SAP Custom
Application

OO
ApplicationISV

Custom Apps

Platform Supporting Middleware

MQ DB2OS/390

Outlook

SCA Portlet WSRP B2B Other

Integrated Console

• Allow for seamless views
across different layers of
abstraction.

Service
Management

Application
Monitoring

Resource
Monitoring

Resource
Monitoring

Transaction
Tracking

Integrated Reporting
• Generate enterprise-

wide service level
reporting

A
pp

s
&

In

fo
 A

ss
et

s

Business Innovation & Optimization Services

D
ev

el
op

m
en

t
Se

rv
ic

es

Interaction Services Process Services Information Services

Partner Services Business App Services Access Services

Integrated
environment

for design
and creation
of solution

assets

Manage and
secure

services,
applications

&
resources

Facilitates better decision-making with
real-time business information

Enables collaboration
between people,

processes & information

Orchestrate and
automate business

processes

Manages diverse data
in a unified manner

Connect with trading
partners

Build on a robust,
scaleable, and secure
services environment

Facilitates interactions
with existing information
and application assets

ESBFacilitates communication between services

IT
 S

er
vi

ce
M

an
ag

em
en

t

Infrastructure Services
Optimizes throughput, availability

and performance

WebSphere Business
Monitor

Tivoli Composite
Application Managers

Tivoli Federated
Identity ManagerTivoli ITSM Process Managers

Tivoli OMEGAMON
XE for Messaging

Tivoli Service Level
Advisor
40 SOA Architcture Handbook for z/OS

Draft Document for Review January 29, 2007 3:05 pm 7331ch02.fm
2.7.12 IBM Tivoli Composite Application Manager for SOA V6.0

This section discusses the most important features of Tivoli Composite
Application Manager (ITCAM) for SOA, that directly benefit the SOA.

Core features that implement QoS for the SOA architecture
� service problem identification and resolution through content views that allow

a drill-down from services to applications to IT resources

� service management alerts and automation

� integrated service level reporting and monitoring

� understand, manage and track service performance

2.7.13 IBM Tivoli Composite Application Manager for WebSphere

This section discusses the most important features Tivoli Composite Application
Manager (ITCAM) for WebSphere, that directly benefit the SOA.

Core features that implement QoS for the SOA architecture:
� quick problem analysis across components of the SOA reference architecture

(Portal, J2EE, CICS, IMS)

2.8 Implementation options for the SOA architecture on
z/OS

At this time we know the options available on each building block of the IBM SOA
reference architecture, and we described in detail the functionality delivered by
the implementations. It is time to create sets of products (what we call here
implementation options), and see if the criteria set is fulfilled. We also identify the
gaps between the options, and differentiate between them.

The main differentiator between the options described is the “depth” of the SOA
implementation, and that is manifested in the level of the coupling of services and
the amount of orchestration that is achieved.

Attention: The SOA implementaion options should be seen as examples. Of
coarse, it is possible to create variations of the three implementation options
discussed. The purpose of the SOA implementation options is to show to what
extent progress can be made towards SOA enablement depending on the
products used.
 Chapter 2. Target SOA architecture on z/OS 41

7331ch02.fm Draft Document for Review January 29, 2007 3:05 pm
2.8.1 SOA implementation option 1 - “service enablement”

The rationale behind this option is: “Let’s see what this SOA enablement will give
us for a very limited application set” (selected from several scenarios). Let us use
some of the IBM tools and products available for SOA enablement, see how they
work in production. We’ll tread carefully and with limited budgeting.
In this implementation some applications were service-enabled and some
reusability was achieved; we installed some pieces of the SOA infrastructure.
Some SOA criteria were fulfilled.”

The diagram in Figure 2-7 shows, for SOA implementation option 1, the
positioning of the IBM products relative to the IBM SOA reference architecture.

Figure 2-7 Mandatory and optional IBM products for service enablement

Table 2-1 on page 43 shows the characteristics of this SOA implementation
option.

3

Business Innovation & Optimization Services

D
ev

el
op

m
en

t
Se

rv
ic

es

Interaction Services Process Services Information Services

Partner Services Business App Services Access Services

IT
 S

er
vi

ce
M

an
ag

em
en

t

Infrastructure Services

Rational
Application
Developer

Rational
Software
Architect

WebSphere
Integration
Developer

WebSphere
Portal

WebSphere
Application

Server

DB2

Tivoli CAM
for SOA

Tivoli CAM
for

WebSphere

Tivoli Access
Manager

z/OS

CICS/IMS
Transaction

Server

HATS

WebSphere Application Server or MQ

mandatory optional Context
dependent

CICS/SOAP

CICS SFR

CWS

IMS Conn.
42 SOA Architcture Handbook for z/OS

Draft Document for Review January 29, 2007 3:05 pm 7331ch02.fm
Table 2-1 Characteristics of SOA implementation option 1 - service enablement

Implementation Option 1 Characteristic

Name Service enablement

When to implement � need to service-enable a few
applications

� need some reusability of services
� have some of the described scenarios

in the enterprise, and want to migrate
them to SOA

� have already some applications that
may be converted easily as services

Infrastructure services Provided by z/OS (mandatory)

Development services Rational Application Developer or an
equivalent tool (mandatory) or
WebSphere Integration Developer
(optional)

IT Services Management Services Tivoli family (optional)

Business Innovation and Optimization
Services

WebSphere Business Integration
Modeler, WebSphere Business
Integration Monitor (both not necessary at
this stage)

Interaction Services Websphere Portal (optional, depending on
context)

Process Services Websphere Process Server (not
necessary at this stage)

Information Services DB2, IMS DB .. (as required in the context
of the enterprise)

Partner Services Websphere Partner Gateway (not
necessary at this stage)

Business Application Services WebSphere Application Server
(mandatory), CICS Transaction Server,
IMS Transaction Manager (as required by
the context)

Access Services WebSphere Adapters (as required by the
context), HATS, CICS Web Services
support, CICS Web Support, IMS
Connect, IMS SOAP Gateway (depending
on scenario)
 Chapter 2. Target SOA architecture on z/OS 43

7331ch02.fm Draft Document for Review January 29, 2007 3:05 pm
Table 2-2 shows the various fulfillment degrees of SOA criteria, for the
applications enabled as services (means “what we get by implementing this
option”).

Table 2-2 SOA criteria fulfilled in SOA implementation option 1 - service enablement

2.8.2 SOA implementation option 2 - “service integration”

The rationale behind this option is: “ we know what we might get out of SOA, we
have already Web services projects and small implementations in the J2EE area.
Let’s start by putting a mini-SOA in place and see how it plays out. Select a few
applications (preferrably from different scenarios, maybe a legacy one and a
J2EE one), convert them to SOA in a tactical (using some of IBMs tools) or
strategic (top-down analysis) way. Achieve some SOA criteria fast for some
urgent projects. Integrate the applications that already implement Web services
in the SOA architecture, see if reusability is achieved. If it plays well we’ll
expand”.

ESB WebSphere ESB / Websphere Message
Broker (optional, only if the context
requires, otherwise implement a light-ESB
using WebSphere MQ)

SOA criteria Have we reached this?

modeling, constructing, deployment yes, necessary tools are in place

management of services no (Tivoli management not in place)

loosely coupled services moderate (because no real ESB in place)

reusable services yes, but of limited use since no ESB is
in place

composable services (processes) no, modeler and runtime for process
server are not there

location transparency moderate for MQ solutions, no for all the
others (reason: no real ESB in place)

transport neutrality no (no ESB with transformation in place)

legacy applications as coarse-grained
service

yes

insight into business services no (Tivoli management not in place)

Implementation Option 1 Characteristic
44 SOA Architcture Handbook for z/OS

Draft Document for Review January 29, 2007 3:05 pm 7331ch02.fm
It is “SOA-light” with the addition of a few more infrastructure components and
with enlarged SOA-enablement . More SOA criteria were fulfilled, we are on the
right way.

The Figure 2-8 shows the positioning of the IBM products relative to the SOA
reference architecture.

Figure 2-8 Mandatory and optional IBM products for service integration

Table 2-3 on page 46 shows the characteristics of this SOA implementation
option.

4

Business Innovation & Optimization Services

D
ev

el
op

m
en

t
Se

rv
ic

es

Interaction Services Process Services Information Services

Partner Services Business App Services Access Services

ESB

IT
 S

er
vi

ce
M

an
ag

em
en

t

Infrastructure Services

Rational
Application
Developer

Rational
Software
Architect

WebSphere
Integration
Developer

D
ev

el
op

m
en

t
Se

rv
ic

es

Business Innovation & Optimization Services

Interaction Services Process Services Information Services

Partner Services Business App Services Access Services

IT
 S

er
vi

ce
M

an
ag

em
en

t

Infrastructure Services

WebSphere
Portal
Server

WebSphere
Application

Server

DB2

CICS/IMS
Transaction

Server

z/OS

WebSphere ESB

HATS

mandatory optional

Tivoli CAM
for SOA

Tivoli CAM
for

WebSphere

Tivoli Access
Manager

Context
dependent

CICS/SOAP

WebSphere
adapters

CWSIMS Conn.

CICS SFR
 Chapter 2. Target SOA architecture on z/OS 45

7331ch02.fm Draft Document for Review January 29, 2007 3:05 pm
Table 2-3 Characteristics of SOA implementation option 2 - service integration

Implementation Option 2 Characteristic

Name Service integration

When to implement � need to fulfill quite some SOA criteria
in a more strategic way

� need reusability of the existing Web
services, and a loosely coupled way
of integration, inlcuding mediation

� have more time and budget to invest
in a strategic SOA infrastructure

� have some of the described scenarios
in the enterprise, and want to
SOA-enable them

� have already some service-enabled
applications that may be integrated

Infrastructure Services Provided by z/OS (mandatory)

Development Services WebSphere Integration Developer or
WebSphere Message Broker Toolkit
(mandatory) on top of the tools mentioned
in SOA implementation option 1

IT Services Management Services Tivoli family (optional)

Business Innovation and Optimization
Services

WebSphere Business Modeler,
WebSphere Business Monitor (optional
and not necessary at this stage)

Interaction Services Websphere Portal (optional)

Process Services Websphere Process Server (not
necessary at this stage)

Information Services DB2, IMS DB ..(as required in the context
of the enterprise)

Partner Services Websphere Partner Gateway (not
necessary at this stage)

Business Application Services WebSphere Application Server
(mandatory), CICS Transaction server,
IMS Transaction Server (as required by
the context)
46 SOA Architcture Handbook for z/OS

Draft Document for Review January 29, 2007 3:05 pm 7331ch02.fm
Table 2-4 shows the various fulfillment degrees of SOA criteria, for the
applications integrated as services (means “what we get by implementing this
option”):

Table 2-4 SOA criteria fulfilled in SOA implementation option 2 - service integration

2.8.3 SOA implementation option 3 - “process integration”

The rationale behind this option is: ”We are in a bind. We have numerous
projects that cannot progress because of the monolithic structure of the
applications. We need to reuse components that are locked inside the

Access Services WebSphere Adapters (as required by the
context), HATS, CICS Web Services
support, CICS Web Support, IMS
Connect, IMS SOAP Gateway (context
dependent)

ESB WebSphere ESB or WebSphere Message
Broker (either one is mandatory) for
service providers that implement Web
services

SOA criteria Have we reached this?

modeling, constructing, deployment yes, necessary tools are in place

management of services no (Tivoli management not in place)

loosely coupled services moderate to full (ESB is in place)

reusable services yes, and because of the ESB also
practical

composable services (processes) no, modeler and runtime for process
server are not there

location transparency moderate for MQ solutions, yes for all that
use ESB

transport neutrality yes (for all that use ESB)

legacy applications as coarse-grained
service

yes

insight into business services no (Tivoli management not in place)

Implementation Option 2 Characteristic
 Chapter 2. Target SOA architecture on z/OS 47

7331ch02.fm Draft Document for Review January 29, 2007 3:05 pm
applications, and we want to integrate them, but we don’t have the architecture
that allows this and also not the necessary infrastructure.

Our applications use several protocols and interaction models, but the whole
thing becomes unmanageable as we install new applications or try to change
existing ones. We need to put something in the middle, to do all this “translation”
and to “loosen” the dependencies between the applications. We have urgent
requirements for new applications, we have seen that we can create process
flows that reuse some of our existing applications (or application parts), but we
need to make out of those application parts “reusable services”.

Our partners are connecting to our applications using various methods, and
every new partner is a costly change. We know what SOA might do for us, and
we trust the concept. We will apply the IBM methodologies for identifying
business services, decomposing application, etc, but we will also use tactical
solutions (wrapping) where necessary. Our application landscape contains
instances of all initial scenarios.

We have the funding for this project, and we need a state-of-the art SOA
implementation. We have to move fast on several areas simultaneously (in
SOA-enablement and SOA-infrastucture), and achieve fast results, but we have
to be careful to keep the SLA and performance levels as required”.

It is, as the name describes, a full blown implementation of the IBM SOA
reference architecture using a lot of existing IBM products. It fulfills all SOA
criteria. It is recommended for a specific type of enterprise, with a specific set of
requirements and a specific application landscape.

Figure 2-9 on page 49 shows the positioning of the IBM products relative to the
IBM SOA reference architecture.
48 SOA Architcture Handbook for z/OS

Draft Document for Review January 29, 2007 3:05 pm 7331ch02.fm
Figure 2-9 Mandatory and optional IBM products for process integration

Table 2-5 shows the characteristics of this SOA implementation option.

Table 2-5 Characteristics of SOA implementation option 3 - process integration

Implementation Option 3 Characteristic

Name Process integration

When to implement � need to completely fulfill SOA criteria
� have a high number of different

connectivity requirements
� need high reusability of services
� need to execute a fast move to SOA,

simultaneously in the area of
SOA-enablement and SOA
infrastructurei

� need a fast implementation of
mediations, transformation, routing

� have all described scenarios in the
enterprise, and want to migrate them
fast to SOA

� have already some applications that
may be converted easily as services

� need to integrate user interfaces and
reach easily the services

6

Business Innovation & Optimization Services

D
ev

el
op

m
en

t
Se

rv
ic

es

Interaction Services Process Services Information Services

Partner Services Business App Services Access Services

IT
 S

er
vi

ce
M

an
ag

em
en

t

Infrastructure Services

Rational
Application
Developer

Rational
Software
Architect

WebSphere
Integration
Developer

WebSphere
Portal

WebSphere
Application

Server

WebSphere
Business
Modeler

WebSphere
Business
Monitor

WebSphere
Process
Server

DB2

Tivoli CAM
for SOA

Tivoli CAM
for

WebSphere

Tivoli Access
Manager

CICS/IMS
Transaction

Server

z/OS

WebSphere ESB WebSphere Message Broker

HATS

WebSphere II

Context
dependent

CICS/SOAP

WebSphere
adapters

Partner Services
WebSphere

Partner
Gateway

mandatory optional

CWSIMS Conn.

CICS SFR
 Chapter 2. Target SOA architecture on z/OS 49

7331ch02.fm Draft Document for Review January 29, 2007 3:05 pm
Table 2-6 on page 51 shows the various fulfillment degrees of SOA criteria, for
the applications integrated as processes (means “what we get by implementing
this option”):

Infrastructure Services Provided by z/OS (mandatory)

Deployment services WebSphere Integration Developer
(mandatory) on top of the tools mentioned
for SOA implementation options 1 and 2

IT Services Management Services Tivoli family (initially optional, to be
installed when there are a number of
services in place)

Business Innovation and Optimization
Services

WebSphere Business Modeler (initially
optional), WebSphere Business Monitor
(as soon as the business requires it)

Interaction Services Websphere Portal (mandatory)

Process Services Websphere Process Server (initially
optional, to be installed when process
flows are necessary)

Information Services DB2, IMS DB, Wesphere Information
Integrator (as required in the context of the
enterprise)

Partner Services Websphere Partner Gateway (on
distributed, if the context requires it)

Business Application Services WebSphere Application Server
(mandatory), CICS Transaction Server,
IMS Transaction Manager (as required by
the context)

Access Services WebSphere Adapters (as required by the
context), HATS, CICS Web Services
support (context dependent), WebSphere
IICF (context dependent)

ESB WebSphere ESB and/or Websphere
Message Broker

Implementation Option 3 Characteristic
50 SOA Architcture Handbook for z/OS

Draft Document for Review January 29, 2007 3:05 pm 7331ch02.fm
Table 2-6 SOA criteria fulfilled in SOA implementation option 3 - process integration

2.8.4 Conclusion

The implementation options discussed in the previous three sections indicate
how progress can be made in SOA enablement by adding products or solutions
to infrastructure. We have also seen that in existing IT environments SOA should
be implemented in steps and according to budget and time constraints. A “big
bang” approach should be avoided.

SOA criteria have we reached this ?

modeling, constructing, deployment yes, necessary tools are in place

management of services yes (Tivoli management tools in place)

loosely coupled services full (both ESB products are in place)

reusable services yes

composable services (processes) yes, modeler and runtime for process
server are in place

location transparency yes (for all that use one of the ESB
products)

transport neutrality yes (for all that use one of the ESB
products)

legacy applications as coarse-grained
service

yes

insight into business services yes (Tivoli management products are in
place)
 Chapter 2. Target SOA architecture on z/OS 51

7331ch02.fm Draft Document for Review January 29, 2007 3:05 pm
52 SOA Architcture Handbook for z/OS

Draft Document for Review January 29, 2007 3:05 pm 7331ch03.fm
Chapter 3. Starting scenarios

This chapter describes possible scenarios that will be used as starting points for
our discussions how to SOA enable an IT landscape. Each starting scenario
covers one or more variations, and is described using certain characteristics.

We will not cover the reasons why to move from a starting scenario to an SOA. In
this book, we consider that these decisions are already taken. We will focus on
possible ways how to SOA enable the different scenarios.

We use the IBM SOA reference architecture to illustrate where the different
building blocks and characteristics of a scenario fit into the overall solution. The
IBM SOA reference architecture is described in 2.4, “IBM SOA reference
architecture” on page 16.

The reason for mapping the starting scenarios to the IBM SOA reference
architecture is to identify what is missing in the current scenario and therefore to
be better able to define what is need when it comes to migrating the starting
scenario towards an SOA. Because there is text in an IBM SOA reference
architecture building block does not necessarily mean that the scenario is
already SOA enabled.

The main starting scenarios that we will use throughout this chapter are:

3270 application 3.1, “Starting scenario - 3270 application” on page 55

Multichannel 3.2, “Starting scenario - multichannel” on page 62

Batch 3.3, “Starting scenario - batch” on page 71

3

© Copyright IBM Corp. 2006. All rights reserved. 53

7331ch03.fm Draft Document for Review January 29, 2007 3:05 pm
Data integration 3.4, “Starting scenario - data access and integration” on
page 78

Homegrown SOA 3.5, “Starting scenario - Homegrown SOA” on page 87

Within each scenario variations may exist.

Note: It is very likely that an IT landscape on z/OS has a combination of the
above mentioned starting scenarios. In that case, different transition
approaches and different solution techniques may be required for each
identified scenario and its associated applications and IT infrastructure.
54 SOA Architcture Handbook for z/OS

Draft Document for Review January 29, 2007 3:05 pm 7331ch03.fm
3.1 Starting scenario - 3270 application

The 3270 scenario is a common scenario. It consists of a 3270 terminal
connected to a host application that runs transactions in CICS or IMS. Data
resides in DB2, a IMS DL/I database or a VSAM file.

Figure 3-1 Conceptual overview of the 3270 starting point scenario

3.1.1 A typical 3270 application

In many cases, a 3270 application has evolved during the years. It might have
been developed during the 1970’s or 1980’s. The result of this is that there may
be different coding standards and tecniques used, which is reflected in complex
code to maintain.

Usually, the application is divided in a presentation and a business layer, but
separation between those might not always be strictly implemented as illustrated
in Figure 3-2 on page 56. Common technical functions are used for DB access.

A note about notation: In the diagrams in this chapter, presentation logic is
represented by the circle with a “P”. The business logic is represented by the
circle with an “S”, and the data access logic by the circle with a “D”.

Technical functions are represented by the circle with a “T”.

z/OS

Database server

Database

Backend server

B DP3270
 Chapter 3. Starting scenarios 55

7331ch03.fm Draft Document for Review January 29, 2007 3:05 pm
Figure 3-2 Example of separation between business, application and technical logic in a
3270 application

3.1.2 3270 application variations

In this section we demonstrate two technology variations of the 3270 scenario:

� One variation uses a CICS 3270 application as a starting point, as shown in
Figure 3-3.

Figure 3-3 Variation showing a logical view of a 3270 CICS application

In this variation, the CICS application is structured using Basic Mapping
Support (BMS) for the presentation logic and using the CICS COMMAREA for
communication between the components, which results in distinct layers
between presentation and business logic.

Presentation Business Technical

Functions

Functions

Functions

Functions

Functions

Functions

Functions

z/OS
CICS Transaction Server

CICS
applicationBMS COMMAREA

Database server

Database

3270
56 SOA Architcture Handbook for z/OS

Draft Document for Review January 29, 2007 3:05 pm 7331ch03.fm
� Another variation uses a 3270 IMS application as starting point, as shown in
Figure 3-4.

Figure 3-4 Variation showing a logical view of a 3270 IMS application

Like in the CICS variation, this application is layered, but using IMS
techniques. Message Format Service (MFS) is used as the screen mapper,
and Scratch Pad Area (SPA) is used for communication. Also in this variation
there is a clear layering between presentation and business logic.

The two variations look very similar when illustrated using this notation. But later
on, when it comes to the migration scenarios, there are quite a few different
technology and product options to consider.

Of course there are other areas to consider than the actual user interface and the
communication mechanism used within the specific transaction manager. An
important area is the data model. If you want to SOA enable one 3270 (silo)
based application, you may have one data model to handle also. If you have
multiple (silo) applications, you probably have almost the same number of data
models as well, with possible overlapping terms and entities. This is a complex
area in itself and we cover data implications separately in 3.4, “Starting scenario
- data access and integration” on page 78.

3.1.3 3270 application characteristics

It is interesting to see that in each application, old or new, we try to address the
same things. Obvious is that we try to address presentation and data access,
but, in fact, also the other types of service that we have defined in the IBM SOA
reference architecture may already be present in traditional applications, such as
the 3270 applications that we are talking about in this chapter.

Figure 3-5 on page 58 shows the characteristics of a 3270 application, in light of
the IBM SOA reference architecture.

z/OS
IMS TM

IMS
applicationMFS SPA

Database server

Database

3270
 Chapter 3. Starting scenarios 57

7331ch03.fm Draft Document for Review January 29, 2007 3:05 pm
Figure 3-5 3270 scenario fit into the IBM SOA reference architecture

Looking at Figure 3-5, the characteristics of the 3270 application are:

� Presentation logic is implemented in CICS or IMS.

� Business logic layer is implemented in CICS or IMS as well.

� Data resides in DB2, an IMS DL/I database or VSAM files.

� Integration with external systems is based on either native techniques, such
as APPC or TCP/IP, or WebSphere MQ.

� Most commonly used languages are Cobol, PL/I, C, C++, and in some cases
even Assembler. In some cases the programs may already be written in the
Java language.

� There is no support for device independence. Naturally, a 3270 application
targets a 3270 device.

� The navigation flow for the dialogues is kept and implemented within of the
application. The dialogues are tightly coupled with each other, and there is
most probably not an external tool for coordinating the (screen) flow. The
same is true for the mediation, which is hand coded.

No role based interactions

No device independence

Business Innovation & Optimization Services

D
ev

el
op

m
en

t
Se

rv
ic

es

Interaction Services Process Services Information Services

Partner Services Business App Services Access Services

ESBESB

IT
 S

er
vi

ce
M

an
ag

em
en

t

Infrastructure Services

No externalized workflow

Tightly coupled applications

Tight coupling with
standards and protocols
58 SOA Architcture Handbook for z/OS

Draft Document for Review January 29, 2007 3:05 pm 7331ch03.fm
Interaction Services
There are different ways for a user to access a 3270 application. Usually, it is
done from a terminal window, but there may be a layer in between, for example
using:

� Host Access Transformation Services (HATS) or Host On Demand (HOD).

� A “fat client” connecting to IMS using Open Transaction Manager Access
(OTMA) and using IMS Connect.

� A “fat client” connecting to CICS using th CICS Transaction Gateway (CICS
TG)1 or using CICS Web Support (CWS).

Some characteristics in the IBM SOA reference architecture that are usually not
supported by a 3270 application are:

� Role-based interactions, where the application is adjusting according to a
specific role.

� Device independence, where the same business logic can be invoked from
different “channels”.

Process services
Process Services is a key element in an SOA and implies that there is a “point of
control” keeping track of the flow and dependencies between the various service
components in that flow. For a more comprehensive overview of Process
Services refer to 2.4.5, “Process Services” on page 21.

We can generally say that there are no Process Services out of the box in a 3270
application environment, but some 3270 application environments may have
gone far enough to include hand-coded Process Services to achieve ceratin
workflow requirements.

What can be done quite easily in a 3270 application environment running in
CICS or IMS is to keep a central point of control for the screen flow. However,
screen flow is not the same as workflow and definitely not the same as Proces
Services. In contrast with Process Services as part of an SOA, the dialogue flow
within a traditional 3270 application is maintained by the transaction manager in
which the application is running and is usually controlled from menus. There is
no coordination done of the overall workflow, and there is a high dependency
between the different dialogues in the application.

A workflow in an SOA may contain human as well as automated steps. Both
forms of workflow are not supported by a 3270 application environment, but as
said earlier, a lot can be achieved by hand coding.

1 CICS TG only supports 3270 interfaces when using the External Call Interface (ECI) interface. This
interface is only supported when CICS TG runs on a distributed UNIX® or Windows® platform.
 Chapter 3. Starting scenarios 59

7331ch03.fm Draft Document for Review January 29, 2007 3:05 pm
Business services in an SOA, that are choreographed by, for example BPEL, are
relatively coarse-grained. 3270 programs usually represent a low level of
granularity. There will most probably not be a one-to-one mapping between a
3270 program and a service in an SOA.

Information Services
A 3270 application usually relies on DB2, IMS DL/I or VSAM as data sources.
Access to data according to the IBM SOA reference architecture is done through
Access Services as described in “Access Services” on page 61

ESB
On a high level, the role of the ESB is to connect loosely coupled services. As
discussed in 2.4.3, “The Enterprise Service Bus (ESB)” on page 19, it includes
the following fundamental services:

� Transport services

� Event services

� Mediation services

A 3270 application in itself is usually not enabled for an ESB, but there is some
functionality provided by the infrastructure, which could be considered to have
flavors of an ESB. This is the case, for example, when:

� the transport is provided by WebSphere MQ or “in-house” developed
middleware

� WebSphere Message Broker (WMB) is used for integration

� there is some level of event handling and mediation implemented in the
application logic itself

Partner Services
There are many standards and protocols for interaction with partners, such as:

� WebSphere MQ

� Sockets

� SNA / APPC

� SWIFT

� EDI

As with Interaction Services, the IBM SOA reference architecture states that
there should be a loose coupling between the business logic and the partner
services logic, preferably through an ESB. This is probably not the case in the
3270 application scenario.
60 SOA Architcture Handbook for z/OS

Draft Document for Review January 29, 2007 3:05 pm 7331ch03.fm
Business Application Services
According to the IBM SOA reference architecture, the components found in this
building block are usually created with a component model, or service
perspective in mind. Examples of implementations are J2EE and possibly .Net.
Therefore a typical 3270 application would not reside here.

Access Services
For our 3270 application scenario, access services would need to provide
support for the following enviornments:

� CICS Transaction Server

� IMS Transaction Manager

� WebSphere MQ

� DB2

� IMS Database Manager

� VSAM

Infrastructure Services
The infrastructure in this scenario is completely based on z/OS and the qualities
that this environment provides.

Development Services
Development of a 3270 application usually includes screen design tools and
templates for code structure (e.g. database access).

The development environment does not necessarily need to be based on a GUI,
but in most cases an Integrated Development Environment (IDE) provides more
productivity and better time to market. An IDE is typically used on a Windows or
Linux workstation and the applications are deployed onto the z/OS environment.

New development is most likely done in Cobol or C/C++, but Java is picking up as
well.

Depending on the application architecture and the programming style, there may
not be a clear separation of presentation and business logic in a typical 3270
application.

IT Services Management Services
As with Infrastructure Services, described in “Infrastructure Services” on
page 61, z/OS provides all the functionality for security, automation, provisioning
and so on. Additionally, IBM Tivoli or other third-party tools may be in use.
 Chapter 3. Starting scenarios 61

7331ch03.fm Draft Document for Review January 29, 2007 3:05 pm
3.1.4 Challenges when moving to an SOA

In an SOA reusability and “separation of concerns” are very important aspects.
To gain full benefit from an SOA, most 3270 applications will need to be
decomposed and refactored to achieve the right level of service granularity and
“separation of concerns”, which will mean at a minimum loose coupling between
the user interface logic and the business logic. The code of existing 3270
applications may be difficult to decompose.

There are probably identical code blocks across different applications doing
nearly the same, possibly acting on the same data.

Business rules are embedded in the code. Changes to business rules imply large
efforts to analyse, design and implement such changes in the code.

It is not uncommon that there are many different programming styles used, since
these applications are developed from the early 70’s until today.

3.2 Starting scenario - multichannel

With multichannel, we mean an architecture that is able to support various
channels. A channel is associated to the usage of a specific device. As illustrated
in Figure 3-6 on page 63, examples of channels are ATM, fat client, browser,
PDA, smartphone etc. All these different channels connect to the same
infrastructure and make use of the same business and data access logic.

Therefore, the multichannel scenario is hard to describe as one scenario. It is
rather a combination of several different integration and access styles.

As a starting point, it is defined with the following attributes:

� There is support for different channels, e.g. browser via HTTP/HTTPS, fat
client via RMI/IIOP, ATM via TCP/IP etc.

� There is usually a mid-tier, where the different channels converge. Usually
this mid-tier hosts components that wraps business and technical
functionality.

� Back-end services and transactions are callable via a standardized API or
through a service interface.

� Using client/server concepts, meaning there is a fat client, with both business
and presentation logic, and sometimes even with direct data access from the
client.

But there are also other characteristics that could make up a multichannel
application:
62 SOA Architcture Handbook for z/OS

Draft Document for Review January 29, 2007 3:05 pm 7331ch03.fm
� Messaging-centric systems, e.g. native WebSphere MQ-enabled IMS and
CICS transactions.

� ‘Headless’ transactions without a service interface.

� Web and J2EE applications, developed as silos, or as reusable component
based application architectures (non-SOA).

� APPC/CPI-C applications.

Figure 3-6 shows the typical multichannel architecture, in which all channels
communicate with a common layer implemented in a J2EE application server.
The common layer then accesses all sorts of backend transaction and database
servers for business logic and data access logic. The J2EE application server
may also perform business and data access logic itself.

Figure 3-6 Conceptual overview of the multichannel starting scenario

The presentation logic for the different channels, is handled by the components
in the application server. The core transaction functions are exposed through
proxy components in the application server. This proxy functionality will most
probably be found in the business layer of the application server. This is
illustrated in Figure 3-7 on page 64.

We assume that the core transaction server logic has been divided in business
and data access functions. This is illustrated in Figure 3-8 on page 64.

z/OS

Core transaction server

ATM / POS

Application server

Database server

Database

B D
P B D

P B D

D

Fat client

Browser

PDA

Smart
phone

Etc.

Standardized
protocol
 Chapter 3. Starting scenarios 63

7331ch03.fm Draft Document for Review January 29, 2007 3:05 pm
Figure 3-7 Logical structure of the component layer in the application server

The core business functionality is present in the backend transaction server. It
may be accessed through, for example, connectors or messaging middleware
like WebSphere MQ.

Figure 3-8 Logical structure of the core functions in the transaction server layer

Data in this scenario resides, as usual, in DB2, DL/I databases or in VSAM files.

Integration with external systems is based on WebSphere MQ, APPC or TCP/IP
or other protocols over TCP/IP, such as HTTP.

Most commonly used languages in the transaction server are Cobol, PL/I, C and
even some Assembler. In the application server typically Java, but Cobol, PL/1
and C /C++ may also be present depending on the server technology used.

There is a certain degree of loose coupling, especially if WebSphere MQ is used.

Interface /
Presentation

Business

Component

Component

Component

Component

Component

Connector / Data

Component

Component

“Service interface” Business Technical

Functions

Functions
Functions

Functions

Functions

Service

Service

Service
64 SOA Architcture Handbook for z/OS

Draft Document for Review January 29, 2007 3:05 pm 7331ch03.fm
A large degree of encapsulation is implemented and reuse is provided through
published interfaces. However, different services may have been implemented for
similar or even identical functions.

The Quality of Service (QoS) is at a high level.

3.2.1 Multichannel variations

The application server may be a J2EE server like WebSphere Application Server
(WAS) or the middle-tier may also be implemented in a transaction server like
CICS or IMS (although it will be more difficult to support multiple channels).

In either case the integration with the core business transactions may go through
messaging middleware like WebSphere MQ. If the application server is a WAS,
the core backend transactions may be accessed through connectors.

If the application server is a CICS or IMS transaction server it may also be
accessed by direct, synchronously calling functions.

Different technologies can be exploited for dynamic workload balancing. In the
frontend application server, dispatchers, sprayers and eventually Workload
Manager (WLM) can be used.

A proprietary service directory may be implemented providing some level of
abstraction and indirection of the function invocations. Location transparency
may also be provided and reuse is enforced by publishing of functions and their
interfaces.

In case fat clients are used, all the presentation logic and some business logic
exists on the client. It is not likely that it is possible to reuse any of these code
entities directly.

3.2.2 Multichannel characteristics

The architecture in the multichannel scenario assumes that there has been some
degree of standardization and structuring around common services and
communication protocols.

However, the infrastructure components are still tightly coupled. Usually, there
are different technologies and standards involved. There are also most probably
multiple implementations of similar core functions.
 Chapter 3. Starting scenarios 65

7331ch03.fm Draft Document for Review January 29, 2007 3:05 pm
Figure 3-9 Multichannel starting scenario fit into the SOA reference architecture

As we did for the 3270 application starting scenario we will now discuss some
characteristics for the multichannel starting scenario, in the context of the IBM
SOA reference architecture.

Interaction Services
Significant for the Interaction Service in this scenario, is that there are multiple
client user interface technologies involved. There may also be multiple
communication protocols that need to be supported. This is the reason why we
have named this starting scenario “multichannel”.

Multiple client user
interface technologies (thin
and fat clients)

Business Innovation & Optimization Services

D
ev

el
op

m
en

t
Se

rv
ic

es

Interaction Services Process Services Information Services

Partner Services Business App Services Access Services

ESBESB

IT
 S

er
vi

ce
M

an
ag

em
en

t

Infrastructure Services

“Loosely” coupled logic

Reusable functions Reusable functionsReusable components

Transport
66 SOA Architcture Handbook for z/OS

Draft Document for Review January 29, 2007 3:05 pm 7331ch03.fm
Figure 3-10 Multichannel starting scenario considerations

Client user interface technologies
In the case of a Web browser based solution, there is no logic executing on the
actual client, except maybe for some JavaScript™ or a Java applet. The
navigation and the dialogues are created on the application server tier, for
example using a JSP™ or servlet. The entire flow, and the Model / View /
Controller pattern is in this case implemented and controlled from the application
server tier.

In the case of a fat client, the workflow and dialogues are implemented in the
client tier. The client handles all the dialogue flows, and knows which programs to
call. Those interfaces may be provided by the application server, or maybe even
directly from the core transaction server or the database server.

Communication protocols
As illustrated in figure Figure 3-10, the protocol used for the thin (browser) client
is HTTP/HTTPS. For the fat client, there are several options, for example, HTTP,
RMI/IIOP, TCP/IP or WebSphere MQ.

There may be some level of role based interactions in this scenario. In the thin
client case, access to the server be provided by a portal running inside the
application server tier. In the fat client case, it could be implemented by a
framework or technology in the application itself. The drawback of implementing
role based behavior in both thin and fat clients using this model, is that there will
be very limited reusability between the two, and the maintenance cost is high.

There may also be some level of device independence implemented in the
application server tier. For example, it may not be a very big effort to adjust to a

z/OS

Core transaction serverApplication server

Database server

Database

B D
P B D

P B D

D
Fat client

Browser

Standardized
protocol

The same interface used for the
backend systems.

HTTP / HTTPS

RMI / IIOP,
HTTP, TCP/IP
 Chapter 3. Starting scenarios 67

7331ch03.fm Draft Document for Review January 29, 2007 3:05 pm
PDA or other small devices, as long as they use a standard protocol, such as
HTTP.

Process Services
Although there may be a fairly loose coupling between the presentation logic and
the business logic, the application flow is still not coordinated by external tooling
in the area of workflow or process choreography. It is contained within the
application, in most cases making use of a framework.

Information Services
In our scenario, there is no direct access to operational data, and the application
usually relies on DB2, IMS DL/I or VSAM as data source. Access to data is
according to the IBM SOA reference architecture done through access services
as described in “Access Services” on page 61.

ESB
In this scenario, there may be some level of ESB functionality, and that is
probably in the area of transport services. We use a standardized middleware for
accessing the functions provided by the core applications.

Although it may be implemented in different places, there may also be some kind
of mediation going on in the application server tier, or in the fat client.

There may be some level of event handling implemented in the application logic.

Partner Services
There are many standards and protocols for interaction with partners. In this
scenario, there might be some reusable functions evolving.

For example:

� WebSphere MQ

� Sockets

� SNA / APPC

� SWIFT

� EDI

As with interaction services, the IBM SOA reference architecture states that there
is a loose coupling between the business logic and the partner services logic,
preferably through an ESB.
68 SOA Architcture Handbook for z/OS

Draft Document for Review January 29, 2007 3:05 pm 7331ch03.fm
In this scenario, it may be that the functions provided by the application server
tier act as an entry point to services. But there are still in-house developed
solutions, which are not serviced or callable by an external standardized tool.

Business Application Services
This scenario is using functions in the Business Application Services building
block. For the thin client, the user interface, navigation and business logic reside
in the application server. Most likely implemented using J2EE, exposing reusable
components.

Access Services
Access Services are heavily used for accessing the backend core functions.
Reusable functions are created in the core backend systems. Support is needed
for accessing:

� WebSphere MQ

� CICS Transaction Server

� IMS Transaction Manager

� Proprietary middleware may be implemented

The backend core functions need support to access data in:

� DB2

� IMS DL/I

� VSAM

Infrastructure Services
The infrastructure in this scenario is mostly based on z/OS and the qualities that
this environment provides.

Since there is additional support for different clients in this scenario, there are
also requirements for other infrastructure services. E.g. management of
Windows, Linux and PDA clients. So there are parts of the infrastructure where
the the z/OS level of QoS cannot be guaranteed. This is especially true with a fat
client scenario.

Development Services
This scenario introduces a heterogenous development environment.
Development in this kind of scenario spans several technologies, standards and
languages, such as:

� Core transaction server.
 Chapter 3. Starting scenarios 69

7331ch03.fm Draft Document for Review January 29, 2007 3:05 pm
On the technical level, support is needed to modify the backend transactions
so they can provide standardized access through the chosen middleware
interface.

Some kind of a dictionary is required to keep definitions and requirements of
the services provided by the transaction server.

Development is most likely done in Cobol, C/C++, PL/I or Assembler, and in
some cases Java.

� Application server.

A development environment for J2EE is required in order to build the
components for the application server tier.

The components that are deployed to this tier, support presentation logic as
well as some business logic. Support for calling the backend core functions is
provided through APIs and frameworks.

� Fat client.

A development environment is required to support the specific platform of the
fat client. Fat clients may be deployed on for example Windows, Linux or
PDAs.

IT Services Management Services
As described in “Infrastructure Services” on page 61, z/OS provides the
functionality for security, automation, provisioning etc. There are also client
platforms and various communication protocols to manage. Support is required
for more environments than just z/OS .

3.2.3 Challenges when moving to an SOA

In this scenario there has already been implemented some level of separation
and decomposition of the presentation and business logic. But usually there are
overlapping functions deployed on different platforms.

Different standards and technologies are used, which could make it hard to reuse
functionality.

There may also be different levels of granularity on the different service
interfaces, because the services are tailored for a specific channel.

Key questions to consider when migrating to an SOA are:

� Keeping QoS at a high level.

� Reusing core services and data. Can the applications be reused, or do they
need to be rewritten?
70 SOA Architcture Handbook for z/OS

Draft Document for Review January 29, 2007 3:05 pm 7331ch03.fm
� Enablement of open standards. Which standards to use?

� Client technologies. Are Web based solutions based on Portal, Ajax, or rich
client good enough? Or do the user interactions require the characteristics of
a fat client.

� z/OS integration with distributed technologies (.Net).

3.3 Starting scenario - batch

A typical scenario probably present in all enterprises is the batch scenario.
Figure 3-11 gives an illustration.

Figure 3-11 Logical overview of the batch starting scenario

The batch job is initiated inside z/OS, either triggered:

� from a scheduling mechanism or tool, such as Tivoli Workload Scheduler
(TWS) for z/OS (formerly OPC)

� directly from TSO

� via the internal reader in a transaction server like CICS or IMS

Data

z/OS

Initiator Step

Input

Output

Interfaces Business

Functions

Functions

Functions

Functions
Functions

Functions

Technical
 Chapter 3. Starting scenarios 71

7331ch03.fm Draft Document for Review January 29, 2007 3:05 pm
� by WebSphere MQ (WMQ) or WebSphere Message Broker (WMB)

A typical batch job consists of one, but usually more steps, organized by means
of the JCL.

The application logic in a program step may include a multitude of program
modules. The programs implement a mix of interface logic, business logic, data
access logic and technical logic, like for instance logging.

Each individual step may receive input from different sources like:

� JCL parameters

� SYSIN data sets

� temporary data sets from earlier steps

� persistent data sources like databases, keyed data sets or Generation Data
Groups (GDG) data sets

� WebSphere MQ queues from processes inside the enterprise or from a
business partner

and produce output to different medias and locations like:

� return codes used to manage the subsequent flow of the job, information to
the system management infrastructure and possibly involving the operations
staff.

� temporary data sets to subsequent steps. May be used for pure temporary
information, subsequent printing or perhaps EDI or FTP processing and so
on.

� persistent data sources like databases, keyed datasets or GDG data sets

� WebSphere MQ queues internally located or occurring at a business partners
site

� The printing subsystem via SYSPRINT

The programming language is typically a third generation language or it could be
a fourth generation language.

In the batch scenario the Quality of Service (QoS) is at a very high level. High
availability and continuous operations may be achieved by running several
LPARs in a parallel sysplex or a Geographically Dispersed Parallel Sysplex™
(GDPS®) with dynamic workload balancing provided by tools such as WLM. And
scalability may be provided simply by adding more capacity. In many cases, very
large and complex batch environments run unattended or with a minmum of
support staff on-site.

The application flow is characterized by:
72 SOA Architcture Handbook for z/OS

Draft Document for Review January 29, 2007 3:05 pm 7331ch03.fm
� high volumes of data to be processed

� high performance needed to process the high volumes of data

The jobs usually run unattended, are scheduled automatically and recovery from
error conditions is usually happening automatically as well. Exceptions may
require human intervention by an operator.

There may be several dependencies, for instance:

� Must run in batch service window due to dependencies on Online Transaction
Processing (OLTP).

� Must run in a certain sequence with predecessors and successors.

� Dependencies on time, such as which time of the day or which day of the
month.

3.3.1 Batch variations

Examples of variations of the application design are the following:

� All logic is implemented in one job step, with or without a clear separation of
different types of logic.

� Separation of types of logic has taken place and implemented in separate job
steps as well, for example, one step for interface logic, one step for data
access and so on.

� Separation of types of logic has taken place and implemented in separate
subroutines of one program.

3.3.2 Batch characteristics

Again, we will describe the characteristics of this scenario in the context of the
IBM SOA reference architecture and thinking about possible service enablement.
 Chapter 3. Starting scenarios 73

7331ch03.fm Draft Document for Review January 29, 2007 3:05 pm
Figure 3-12 Batch scenario fit into the IBM SOA reference architecture

Interaction Services
The jobs are initiated by a scheduler or manually. No user interface is involved
from an application point of view.

Operator intervention may be required, either for device mounting or handling of
events and exceptions.

Batch jobs may be triggered by messages entering a WMQ queue used for
reception of data or maybe just for triggering.

There may be some calendar or mail integration provided to inform business
users of the progress and completion of the job.

Process Services
To some extent there is a certain workflow within a batch environment. There are
dependencies between jobs and between steps in jobs. Jobs and job steps may
happen conditionally, depending on the outcome of another job or job step.
Those dependencies are usually maintained, monitored and executed from a job
scheduler tool.

The flows of jobs and job steps is usually quite static and at the time of execution
there is no human intervention, unless an exception takes place.

Mainly unattended

Business Innovation & Optimization Services

D
ev

el
op

m
en

t
Se

rv
ic

es

Interaction Services Process Services Information Services

Partner Services Business App Services Access Services

ESBESB

IT
 S

er
vi

ce
M

an
ag

em
en

t

Infrastructure Services

Static sequence of steps

Tightly coupled logic

Large volume transfers

Non-SOA ETL

Pre pack. products

Large volume processing

Extreme
QoS
74 SOA Architcture Handbook for z/OS

Draft Document for Review January 29, 2007 3:05 pm 7331ch03.fm
Information Services
Batch is an excellent environment for extracting, transforming, processing and
loading the vast amounts of data present in the databases, for instance for
building and maintaining a Data Warehouse or creating daily business reports.

ESB
Integration between components (programs executed in jobsteps) is typically
taking place by means of data sets, such as GDG, VSAM, QSAM or sequential
data sets. Also UNIX files are possible, as well as so-called “TEMP” data sets.
Also, WebSphere MQ is a possibility within a batch environment, in which case
programs in jobsteps read from or write to queues in WebSphere MQ.

Obviously, in traditional batch environments we do not see the full function ESB
positioned for a modern state-of-the-art SOA, as discussed in 6.3, “Stage two -
“Service Integration”” on page 223. Everything needed to transform data is done
inside programs and routing is typically done in a very static way.

A limited degree of location transparency for logic and data is present. Job
initiation is managed by a scheduler. The steps and their interrelations are
described by JCL and processed accordingly. The physical representation and
location of data is typically determined by data and queue definitions and only
indirectly referenced from the program logic.

Partner Services
Data is interchanged with business partners through:

� WebSphere MQ

� EDI

� FTP

� and possibly proprietary protocols

Interchange is handled in large batches with multiple entities included, not as
individual records or messages.

Business Application Services
There may be a very limited interaction with existing service enabled functions.

Access Services
Access Services are provided by the data and database access methods:

� DB2 delivers transaction (2-phase commit) support and relational data
structures which may have a relatively loose coupling to the program logic.
 Chapter 3. Starting scenarios 75

7331ch03.fm Draft Document for Review January 29, 2007 3:05 pm
� IMS DL/1 also delivers transaction (2-phase commit) support, but the data
structures are more tightly coupled to the program logic.

� VSAM file support.
Data structures are very tightly coupled to the program logic.

� QSAM dataset are used for transportation of temporary data between the job
steps, storage for persistent state data or parameters, or as a container for
large batches of data to be archived or sent to printing.

� WMQ delivers asynchronous persistent and non-persistent messaging
between steps or jobs.

With DB2 there may be a relatively strong data structure based on application,
department or even enterprise level data model.

With the other access methods, the data structure is not likely to be on a higher
level than department and in many cases even just on application level.

Infrastructure Services
Infrastructure Services are provided by:

� z/OS delivering high performance, accountability, auditability, system integrity,
security and so on

� Parallel sysplex or GDPS delivering high availability, continuous operations,
scalability

� A scheduling tool such as Tivoli Workload Scheduler for z/OS

� Workload balancing through WLM

� Security management through RACF® or an equivalent SAF-based product

� System Automation

Development Services
Programming tools are used for direct coding, possibly with language sensitive
editors.

Programming languages typically include Cobol, PL/I, Assembler, C/C++ and
REXX, but again, Java is picking up here as well.

The programming components consist of source modules, load modules, listings
and others. They may be managed by dictionaries or repositories along with
other development components like data description and analysis documents
and supported by version control and change systems.
76 SOA Architcture Handbook for z/OS

Draft Document for Review January 29, 2007 3:05 pm 7331ch03.fm
IT Services Management Services
IT Services Management Services are provided by Tivoli or other 3d party tools.

3.3.3 Challenges when moving to an SOA

Typically, millions of records are processed in a batch jobs. The approach is that
you initiate one function at a time processing all the records in one or a few
logical loops with only one instance of the initial and termination logic. This is
very efficient. If all functions including the initial and termination logic would be
invoked for each data record, performance would decrease by orders of
magnitude. Also, many times, operations on data are grouped and a set of
operations can only be considered complete and succesful if all individual
operations have been complete and succesful. Many times, batch output
contains header and trailer records, needed for autiding purposes.

In many cases, job steps exist before and after a program to just do sorting,
grouping or aggegration of records, and creating totals for auditing at the same
time. In this case, there is hardly any business logic executed.

The volume itself is a challenge and requires extremely high performance and
high throughput. May batch service windows just fit and there cannot be any
delay in the jobs without jeapordizing the OLTP window.

Moving batch components into an SOA will be a challenge, but, as we will
discuss in 5.4, “SOA implementation scenarios for batch” on page 183, there are
ways to integrate batch into an SOA in a “light” manner. There are different points
of view here.

Depending on the transition approach and the level of SOA maturity required,
batch logic may need to be refactored to achieve the right level granularity and
thus reusability. Decomposition of batch logic may not be easy. There are
probably lots of nearly identical code blocks across different batch jobs doing
nearly the same functions, possibly on the same data.

The jobs run smoothly with high performance and reliability. Any type of change
will most probably decrease the Quality of Service to some extent.

In general, there is a risk attached to make big changes in the z/OS batch
environment. It may affect reliability and performance. Especially if the changes
are of a structural or architectural kind.
 Chapter 3. Starting scenarios 77

7331ch03.fm Draft Document for Review January 29, 2007 3:05 pm
3.4 Starting scenario - data access and integration

We describe here the architectural scenarios representing data access (from
batch and transaction-oriented systems) and those representing data
integration.

When we speak about data integration we mean the process by which the
information (stored on multiple, disparate data assets across the enterprise, but
representing, for different information systems, the same piece of information -
for example a customer record) are presented to the applications in an unified,
trusted way and are consistenly updated.

The variations of the scenario show the ways most enterprises implement data
integration today.

3.4.1 Data on z/OS

Most of the enterprises have a mixture of data, accessed by z/OS-based
applications. We can categorize the data storage on z/OS as follows:

� Relational Database Management System (RDBMS), in most cases this is
DB2.

� Non-relational database management system, which is usually IMS DL/1.

� Data sets, which are transactionally accesible using different file access
methods (sequential, indexed, non-indexed etc.), for example VSAM.

� Sequential MVS™ data sets (partioned, GDG)

� UNIX files

In most cases XML can be stored natively. DB2 and IMS support native XML
data storage. Sequential MVS data sets and UNIX files can contain XML too.

Each of thes types of data storage has a specific access method. The usual way
to get to this data is through:

� The support for data access delivered in the traditional transaction servers
like CICS and IMS. CICS and IMS are highly integrated with DB2, IMS DL/1
and VSAM datastores.

� A Java based application server (WebSphere). Java provides standard APIs
for relational (SQL-based) database access by means of JavaDatabase
Connectivity (JDBC™) and SQLJ and UNIX sequential file access by means
of java classes. IBM also provides specific frameworks to access sequential
and VSAM data sets from Java. Refer to Java Stand-alone Applications on
z/OS Volume II, SG24-7291, for details.
78 SOA Architcture Handbook for z/OS

Draft Document for Review January 29, 2007 3:05 pm 7331ch03.fm
� The batch support delivered by the operating system.

� Or, through the positioning of an additional integration layer (with different
depths and functions, starting with an ”integrator” and ending with a “data
warehouse”).

3.4.2 Data access and integration variations

In the next sections we will discuss a number of variations of the data access and
integration scenario:

� Direct data access in “Direct data access” on page 79.

� ETL (Extract, Transform and Load) in “Batch ETL (file transfer)” on page 80
and “Messaging ETL” on page 81

� Data replication in “Data replication” on page 82

� Data integration and data warehouse in “Integrator / Data Warehouse” on
page 83

Direct data access
The scenario of direct data access is used in most enterprises today; it is shown
in Figure 3-13 on page 80. The characteristic of the scenario is that the data
access logic is tightly embedded within the application (this means that the
application has to know - and is dependent of - the structure of the data.)
Changes in the data structure and representation (due to application
requirements to change the data model) are very difficult to implement and
maintain. The access method is determined by a combination of the
programming languageand the type of data storage being used.

Note: Note that the data access scenario is usually existing in combination
with any ot the other scenarios discussed in this book (3270 application,
multichannel, batch or homegrown SOA).

The ETL, data replication and data integration scenarios might exist
stand-alone on z/OS. This means that only the data and eventually the
infrastructure and tooling for data extraction, replication and integration are
located on z/OS, but all the applications using this data are located elsewhere.
This would be the case when z/OS is only used as a “data server”.
 Chapter 3. Starting scenarios 79

7331ch03.fm Draft Document for Review January 29, 2007 3:05 pm
Figure 3-13 Direct access to data

Batch ETL (file transfer)
The very well known scenario of batch ETL (Extract Transform Load) is used in
most enterprises today. It was necessary to implement such an approach
because of the new application requirements and technology changes collide
with the existence of legacy applications.

Since most applications are “tightly coupled” with data, ETL was the technology
that allowed the applications, with no changes on the application side, to have
the “consistent” view of the enterprise data at least at one point, namely at the
beginning of each business day (meaning after the nightly batch runs that
synchronises all data assets). The scenario is shown in Figure 3-14 on page 81.

As we can see, in this case the task of transporting the information updates,
storing the information in the correct format, and achieving consistency of the
data is relegated to the integration layer that functions totally separated from the
application. In fact the integration layer works usually only when the applications
do not access the data!!

Business Innovation & Optimization Services

D
ev

el
op

m
en

t
Se

rv
ic

es

Interaction Services Process Services Information Services

Partner Services Business App Services Access Services

ESBESB

IT
 S

er
vi

ce
M

an
ag

em
en

t

Infrastructure Services

Loosely coupled logic

Reusable functionsReusable services

Published service
interface
80 SOA Architcture Handbook for z/OS

Draft Document for Review January 29, 2007 3:05 pm 7331ch03.fm
Figure 3-14 Integration through batch oriented ETL

Messaging ETL
A variation of the ETL scenario exists when the applications send the “updated
view” of the information by means of a messaging infrastructure (for example,
WebSphere MQ). We name this scenario messaging ETL. This is shown in
Figure 3-15 on page 82.

In this case the integration layer is used by the applications to tranport the
“updated information”, but the task of transforming and updating the information
is now done by the applications themselves.

Data
Data

Extract

Application

z/OS

Data
DataApplication

z/OS Transform

Transport

Load

data access

data access

integration layer
 Chapter 3. Starting scenarios 81

7331ch03.fm Draft Document for Review January 29, 2007 3:05 pm
Figure 3-15 Integration through messaging ETL

Data replication
This data replication scenario can be found when the enterprises use data
propagation technologies (for example DB2 data propagator, but also
technologies for establishing consistency for VSAM data sets). Figure 3-16 on
page 83 shows this scenario.

This technology allows near real-time consistency of the data.

As we can see, in this case the task of transporting the information updates,
storing the information in the correct format, and achieving consistency of the
data is relegated to the integration layer that functions totally separated from the
application.

Data
Data

Extract

Application

z/OS

Data
DataApplication

z/OS Transform

Messaging

Load

data access

data access

integration layer
82 SOA Architcture Handbook for z/OS

Draft Document for Review January 29, 2007 3:05 pm 7331ch03.fm
Figure 3-16 Integration through data replication

Integrator / Data Warehouse
These two variations are used by companies with a heterogeneous data
infrastructure that have installed an integration layer that covers access
“transparently” to this data (besides doing aggregation, correlation, cleansing,
federation and other activities).

The functionality depth of the solution distinguishes between Integrator and Data
Warehouse. Figure 3-17 on page 84 and Figure 3-18 on page 84 show these
scenarios.

In both scenarios, all activities that are necessry for maintaining the consistency
level of the information are relegated to the integration layer, and are completely
transparent for the application.

Data
DataApplication

z/OS

Data
DataApplication

z/OS

data access

data access

integration layer

(synchronous process)
 Chapter 3. Starting scenarios 83

7331ch03.fm Draft Document for Review January 29, 2007 3:05 pm
Figure 3-17 Integrator scenario

Figure 3-18 Data Warehouse

3.4.3 Characteristics

In the following sections we describe the characteristics of the “data access and
integration” scenarios, as they relate to the IBM SOA reference architecture. We
also indicate possible SOA-enablement patterns.

z/OS

Data
Data Data

Extract

Transform

Load

Business application

Consolidate

Federate

Integrator

Information access

integration layer

z/OS

Analysis

Data
Data Data

Extract

Transform

Load

Decision

support

Report

Business application

Consolidate

Federate

Data warehouse

data access

integration layer
84 SOA Architcture Handbook for z/OS

Draft Document for Review January 29, 2007 3:05 pm 7331ch03.fm
ESB
In the batch ETL variation the integration layer can be thought as a “mediation
combined with transport services” (function of an ESB). It has a mediation
character (transforms records from a format into another, eventually enriches the
records with additional information) and a transport character (uses one of the
existing file transfer products on z/OS). It is tightly coupled with the application,
because the “jobs” doing the ETL function have to know everything about the
application they are sending records to (they have to know things like
destinations, record formats, etc).

In the messaging ETL variation, the integration layer can be thought as just a
“transport service” (function of an ESB). The mediation and transformation
function is done inside the application, and therefore even more tightly coupled
that in the batch ETL variation.

In the data replication scenario the integration layer can be thought as a
‘technology tool” allowing a consistent view of the data. This means that from a
SOA point of view we see no SOA-enablement here.

The “Data Warehouse” and “Integrator” scenarios can be seen as information
tools that allow “information” to be presented in a consistent way, hiding all
operations taking place on the underlying datastores. Both implement
transformation (ESB function), federation (Information services function), and the
data access layer. The data warehouse implements much more business logic
(specialized queries, multi-dimensional analysis). We see here potential for the
implementation of SOA services.
 Chapter 3. Starting scenarios 85

7331ch03.fm Draft Document for Review January 29, 2007 3:05 pm
Figure 3-19 Data integration scenarios related to the IBM SOA reference architecture

Partner Services
Some of the variations presented occur also in the B2B scenarios, where
applications belonging to one business interact with applications of the partners.
ETL batch and messaging (where the messages respect an industry standard)
are common occurences in B2B patterns. Therefore these scenarios can also be
seen as belonging to the SOA building block “Partner services”.

Access Services
Direct DB access is the rule (either directly through the application or indirectly
through ETL jobs), except in the variation “Data Warehouse” where the
information access is separated from the real database.

Infrastructure Services
All solutions work on z/OS and as such inherit the Quality of Services of the
platform.

3.4.4 Challenges when moving to an SOA

The Integrator/Data Warehouse scenario can be easily integrated into an SOA, if
the products that implement the scenario offer SOA services (through Web
services interfaces, WebSPhere MQ interface or otherwise). We will see if this is

Multiple client user
interface technologies (thin
and fat clients)

Business Innovation & Optimization Services

D
ev

el
op

m
en

t
Se

rv
ic

es

Interaction Services Process Services Information Services

Partner Services Business App Services Access Services

ESBESB

IT
 S

er
vi

ce
M

an
ag

em
en

t

Infrastructure Services

Extract, Transform, Load

Consolidation / Federation

Direct access to data

Messaging,
file transfer
86 SOA Architcture Handbook for z/OS

Draft Document for Review January 29, 2007 3:05 pm 7331ch03.fm
possible when describing the solution techniques in 5.5, “SOA implementation
scenarios - Data access and integration” on page 197.

For the ETL batch variation we might put an ESB in place that implements
“file-drop” access points, mediation, routing and transformation services.

For the ETL asynchronous (messaging) variation we might try to separate the
“transformation” function from the application, implement the Extract, Transform
and Load as services, and let them run as sequenced mediations inside of an
ESB.

Another possible solution is to encapsulate the ETL batch with a SOA-enabled
wrapper and treat it as a “service batch process” (refer to 5.4, “SOA
implementation scenarios for batch” on page 183). This might make sense if the
encapsulated ETL batch can be designed as a reusable service.

For the scenarios that are relevant to B2B connections we can explore the use of
the WebSphere Partner Gateway2.

These ideas will be discussed in more detail in chapter 5.5, “SOA implementation
scenarios - Data access and integration” on page 197.

3.5 Starting scenario - Homegrown SOA

Implementing a service-based approach is not something new. Some companies
are doing this already for years. Achieving SOA attributes, such as location
transparancy, mediation and reusability has been a goal for many IT
organizations for a long time. Those situations where a “service” approach has
been taken, but not necessarily following the concepts for an SOA as we define
them today, is called a homegrown SOA.

The two principles of the homegrown SOA scenario are, firstly, that the scenario
is aimed at achieving some of the SOA benefits, such as location transparancy
and reusability, and secondly, that the scenario consists of “Roll Your Own”

2 The WebSphere Partner Gateway is not available on z/OS.

Important: The word “homegrown” SOA may sound negative, but we have
chosen to use this title to be able to make a distinction between service
oriented implementations from the past and the ideal SOA implementation as
depicted in Chapter 2, “Target SOA architecture on z/OS” on page 7. There
are definitly differences and we want to highlight them, so that we can propose
recommendations to improve the homegrown SOA to become a much better
SOA.
 Chapter 3. Starting scenarios 87

7331ch03.fm Draft Document for Review January 29, 2007 3:05 pm
frameworks and abstraction layers. It has evolved during the years, and is not
completely based on open standards. It has been primarily developed with the
objective to meet the requirements of integrating applications in a more flexible
way, but not necessarily using open standards. Many times WebSphere MQ is
used as the underlying infrastructure.

Figure 3-20 Logical view of the homegrown SOA starting scenario

In this scenario, the logic has been divided in service (interface), business and
technical functions. As illustrated in figure Figure 3-20, the services are exposed
in the “Service interface”. Core business functionality is present in the backend
transaction server and are accessed through messaging middleware like WMQ
or any other type of communication feature or protocol.

Furthermore, the charactaristics of this scenario are:

� The data resides in DB2 or IMS DL/I databases or in VSAM data sets.

� Integration with external systems is based on WMQ, APPC or possibly
TCP/IP sockets.

Note: The service interface in this concept is an interface accessible through
any type of protocol. This protocol may be high-level (MQ) or low-level
(TCP/IP) and very open or not. Many homegrown SOAs from the past have
not had the objective to use open standards, but just standards that work to
get the job done in that specific situation.

In our current SOA definitions we require the service interface to be accessible
from any type of commonly used open protocol.

z/OS

z/OS

Service caller

Service registry

Database Server

Database

T

Backend Server

B DAPI Service interface

Database

API

API

“Mediation light”
Syntax control
Transformation

S

88 SOA Architcture Handbook for z/OS

Draft Document for Review January 29, 2007 3:05 pm 7331ch03.fm
� Most commonly used languages in the transaction server are Cobol, PL/I, C
and even some Assembler. In the application server typically Java is used.

� There is a certain degree of loose coupling, especially if WMQ is used.

� A large degree of encapsulation is implemented and reuse is provided
through published interfaces. However, different functions may have been
implemented for similar or even identical functions.

� No particular service flow is implemented.

� A departmental or application wide datamodel may exist. It is possible but not
likely that an enterprise wide, consolidated datamodel exists.

� Data and function modeling tools are probably used.

� The Quality of Service (QoS) is at a high level.

� The service caller may exist inside an application server on z/OS or a
distributed platforms or it may be a client program.

Some attributes of the service interface are:

� It is logically functioning as a “bus”.

� It includes light mediation and transformation.

� Interfaces are proprietary or, in some more modern homegrown SOAs,
already based on SOAP.

� It uses dynamic lookup in a “service registry”, which provides location
transparency. This service registry should be seen as a failry simple datastore
that contains a “binding” between the logical call from the application and the
physical destination of the message or request.

� There is some level of transport protocol independence, e.g. hiding the
transport protocol from the application.

� Native transaction support is available in some supported protocols (APPC,
J2C connectors, IMS OTMA, CICS EXCI and so on).

� High level of QoS (availability, continuous operations, dynamic workload
management and so on) if th entire solution runs on z/OS.

3.5.1 Homegrown SOA variations

The variations existing in this scenario are determined primarily by the extent in
which functionality is implemented that mimics SOA functionality, such as an
ESB, the usage of open standards, service orchestration, separation of concerns
and so on. If all of this done very well and adequate th “homgrown” SOA may be
qualify as a real SOA, robust and flexible enough for the future.
 Chapter 3. Starting scenarios 89

7331ch03.fm Draft Document for Review January 29, 2007 3:05 pm
So, we may have a variation in which an ESB has been implemented, but just not
using open protocols. Routing and protocol conversion may been taken care of in
the “ESB”, but transformation may still reside inside application programs. So,
there are many graduations thinkable in this scenario.

There may also be homegrown SOA scenarios where everything is still based on
traditional technology (CICS or IMS), but where a “service” concept implemented
has already been implemented.

3.5.2 Homegrown SOA characteristics

The architecture in the homegrown SOA starting scenario assumes that there
has been some degree of standardization and structuring around business
services and communication protocols.

The infrastructure components are loosely coupled. Usually, there are different
technologies and standards involved. There are also most probably still multiple
implementations of similar core functions.

Figure 3-21 Homegrown SOA scenario fit into the IBM SOA reference architecture

Some characteristics of the homegrown SOA scenario, in the context of the IBM
SOA reference architecture are mentioned in the following sections.

Business Innovation & Optimization Services

D
ev

el
op

m
en

t
Se

rv
ic

es

Interaction Services Process Services Information Services

Partner Services Business App Services Access Services

ESBESB

IT
 S

er
vi

ce
M

an
ag

em
en

t

Infrastructure Services

Loosely coupled logic

Reusable functionsReusable services

Published service
interface
90 SOA Architcture Handbook for z/OS

Draft Document for Review January 29, 2007 3:05 pm 7331ch03.fm
Interaction Services
In the homegrown SOA scenario the interaction (user interface) has usually not
been designed as a set of reusable service components with open standards and
connected to an ESB. Instead, any type of user interface technology is used for
each specific situation. Quite a few homegrown SOAs have adopted the “portal”
concept, but are still not using a service concept in the (user) interaction layer.

The pre-dominant communication protocol used between the user interface
device and the interaction layer is HTTP and between the interaction layer and
the backend business logic and data access logic could be anything depending
on where the interaction layer and the backend components are implemented. If
both the interaction layer and business/data access logic are implemented in a
J2EE application server, the communication will be J2EE as well.

Process Services
Services can be used as atomic services/components. There may be some level
of service choreography implemented, using frameworks or tools. The concept of
a “process engine” is fairly new and may be found in some recent homegrown
SOAs.

Information Services
Many homegrown SOAs have a certain abstraction in accessing data. A common
data access layer is quite common and application programs do not all go directly
to data, but do this through this data access layer by means of abstract calls.
However, accessing data as a service is less common and may only be found in
more recent homegrown SOAs.

ESB
The ESB functionality provided in the homegrown SOA is usually related to the
area of transport services. Homegrown SOAs, in most cases, have their
mediation, if any, hand-coded inside the application layer or inside the “bus”
(which is hand-coded as well in most cases).

� Protocol independence is implemented to a certain degree or not at all and
and not necessarily based on open standards.

� There is a standardized middleware for accessing the backend systems such
as CICS and IMS.

� Routing is provided by the bus, which is handcoded in many cases.

� Mediation, including transformation, as we define it in the IBM SOA reference
architecture is done in the application layer or in the bus, if required.

� Event handling infrastructure is most probably not used. There might be an
implementation using pub/sub with MQ.
 Chapter 3. Starting scenarios 91

7331ch03.fm Draft Document for Review January 29, 2007 3:05 pm
Partner Services
There may be call-outs to partners, but they are usually not SOA enabled
themselves.

Business Application Services
Adapters or connectors for core business applications are provided by the
homegrown SOA, sometimes using own code and sometimes using products
from vendors.

Access Services
Access Services are heavily used for accessing the backend core functions.
There is support for:

� WebSphere MQ

� CICS

� IMS

� Proprietary middleware may be implemented

The backend core functions need support to access data in:

� IMS DB2

� DL/I

� VSAM

Infrastructure Services
The infrastructure in this scenario is mostly based on z/OS and the qualities that
this environment provides.

Development Services
There is no specific tooling used for a homegrown SOA. Homegrown SOAs are
usually based on J2EE and the usage of messaging (WMQ).

On the technical level, support is needed to modify the backend transactions so
they can provide standardized access through the chosen middleware interface.

Some kind of a dictionary is required to keep definitions and requirements of the
services provided by the transaction server.

IT Services Management Services
As described in “Infrastructure Services” on page 61, z/OS provides the
functionality for security, automation, provisioning etc.
92 SOA Architcture Handbook for z/OS

Draft Document for Review January 29, 2007 3:05 pm 7331ch03.fm
3.5.3 Challenges when moving to an SOA

In the homegrown SOA scenario there has obviously been some level of
decomposition of the presentation and business logic. Also, homegrown SOAs
ahve been implemented with loose coupling and reuse in mind. But usually, there
are still overlapping functions deployed on different platforms.

Also, homegrown SOAs are not per definition based on open standards, which
makes it sometimes hard to open up the services for other consumers.

Key questions to consider when migrating to an SOA according to the IBM SOA
reference architecture are:

� How to keep the QoS at a high level.

� How to implement open standards.

� How to abstract mediation (especially transformation) out of the application
layer or the self-written bus.

� How to implement the interaction layer as services.

In 5.6, “SOA implementation scenarios for homegrown SOA” on page 213 we will
take a look at different approaches to improve a homegrown SOA to achieve
more of the SOA benefits.
 Chapter 3. Starting scenarios 93

7331ch03.fm Draft Document for Review January 29, 2007 3:05 pm
94 SOA Architcture Handbook for z/OS

Draft Document for Review January 29, 2007 3:05 pm 7331ch04.fm
Chapter 4. The SOA transition process

Now that the “starting scenarios” have been identified and described, it is time to
examine the process of transitioning from existing applications and transactions
to services, ready to participate in a full SOA.

The topics examined in this chapter are:

� methodologies to analyze the existing business and application environment,
discussed in 4.1, “Methodologies for analyzing the business and application
environment” on page 96

� tools used to inventory and examine existing applications for eventual reuse
and transformation, discussed in 4.2, “Tools to assist in the SOA
transformation process” on page 108

� a “pattern-driven” approach to moving from “core” applications to SOA-centric
services, discussed in 4.3, “A pattern-driven approach to transition from
“core” applications to services” on page 118

4

© Copyright IBM Corp. 2006. All rights reserved. 95

7331ch04.fm Draft Document for Review January 29, 2007 3:05 pm
4.1 Methodologies for analyzing the business and
application environment

In this section we will list different methodologies, all with the purpose to assist in
developing an SOA.

4.1.1 Service-Oriented Modeling and Architecture (SOMA)

A key recommendation for development of an SOA is to adopt and adapt a
solution development methodology to identify, design and build SOA
components. The Service-Oriented Modeling and Architecture (SOMA),
describes a set of product and technology agnostic modeling, analysis and
design activities and techniques to build a SOA.

The SOMA process is comprised of three major steps,as depicted in Figure 4-1:

� Identification

� Specification

� Realization

Figure 4-1 Service-Oriented Modeling and Architecture (SOMA)

Through its methods, activities and techniques, SOMA addresses a number of
antipatterns that have been encountered by practitioners on engagements
involving identification and design of services. Activities and techniques within
each of the three steps provides guidelines and solutions to avoid occurrences of
these antipatterns. As we review each of the SOMA steps, we identify and
describe the associated antipatterns.

Existing system
analysis

Goal-service
modeling

Domain
decompositionIdentification

Specification

Realization

Service
specification

Subsystem
analysis

Component
specification

Component flow
specification

Information
specification

Service allocation
to components Component layer

Service flow
specification

Message & event
specification

Service realization decisions
96 SOA Architcture Handbook for z/OS

Draft Document for Review January 29, 2007 3:05 pm 7331ch04.fm
Process and methodology: RUP, SOA, and SOMA
Rational Unified Process® (RUP®) is based on software engineering best
practices, offers a configurable framework and is scalable to support enterprise
initiatives. Therefore, all aspects of RUP can also be applied to the development
of an SOA. RUP provides a systematic approach to bridge the gap between
business and IT to support a major area of concern, identification of services and
how business processes are realized through execution of services.

RUP also provides support for both the bottom-up and top-down approaches by
acknowledgement of existing design elements and through activities such as
architectural analysis to identify architectural elements such as services.
Figure 4-2 illustrates the position of SOMA within the RUP life cycle.

Figure 4-2 Position of SOMA within RUP life cycle

Phases

Iterations

Inception Elaboration Construction Transition

Initial Elab #1 Elab #2
Const

#1
Const

#2
Const

#n
Tran
#1

Tran
#2

Disciplines

Business Modeling

Requirements

Analysis & Design

Implementation
Test

Deployment
Configuration &

Change Mgmt
Project Management

Environment

RUP

Object Oriented
Application
Development
Lifecycle

OO
Analysis

OO
Design

Implementation
Integration Test,

System Test

User Acceptance
Test, Packaging,

Rollout

Requirements
Gathering

SOMA
 Chapter 4. The SOA transition process 97

7331ch04.fm Draft Document for Review January 29, 2007 3:05 pm
Yet, there is some work in progress to provide additional support within RUP
such as incorporating content for describing SOMA techniques and artifacts.
Some extensions are required such as introduction of the service model as an
artifact and some supporting activities.

Service identification
Service identification begins by applying three complimentary techniques
including domain decomposition, existing asset analysis and goal to service
modeling to identify candidate services, candidate enterprise components, and
flows.

The most important outcome of these activities is the service model. The service
model is comprised of candidate services that, ultimately, support business
services, processes and goals of the enterprise.

A key aspect of the identification step is that it employs a meet-in-the-middle
approach including a combination of top-down, bottom-up and middle-out
analysis techniques. In many cases a pure bottom-up approach is taken.
However, this approach typically leads to poor definition of services that are
driven mainly by architecture of legacy application interfaces and not from a
business perspective.

Domain decomposition represents the top-down approach where business
domains are decomposed into functional areas across the value net. Through
this technique we can establish the scope of the effort. After domains have been
decomposed into functional areas, each area can then be further decomposed
into processes and sub-processes and high-level business use cases.
Experience shows that the business use cases are considered good candidates
for exposure.

Existing asset analysis represents the bottom-up approach where we analyze
and leverage APIs, transactions and models from legacy and packaged
applications as possible candidate services.

Goal-service modeling provides a middle-out approach that relates services to
goals, sub goals, KPIs and metrics of the enterprise. This technique provides a
certain level of validation in the form of a completeness check in that it may
reveal candidate services that were not identified through the top-down and
bottom-up activities.

Finally, subsystem analysis expands on subystems identified during domain
decomposition and specifies interdependencies and flows between them.
98 SOA Architcture Handbook for z/OS

Draft Document for Review January 29, 2007 3:05 pm 7331ch04.fm
Antipatterns
Techniques described within this step provide some best practices that can be
applied to avoid some very common antipatterns related to identification of
services. We summarize two key antipatterns:

� Service Proliferation Syndrome

First, there is a strong tendency to equate Web services with SOA where, in
reality, Web services is an entry point towards SOA adoption. It is possible to
create an SOA that does not use Web services and it is also possible to use
Web services in a way that cannot really be considered service-oriented.
Consequences of this viewpoint manifest themselves into a proliferation of
services, commonly referred to as the Service Proliferation Syndrome, often
resulting in inappropriate exposure of services that are not business aligned.

Determining the most appropriate level of service granularity is one of the
most challenging aspects of service-oriented modeling. The rule of thumb is
to model as coarse grained as possible. While fine grained services are also
possible, ultimately, the challenge is to find the balance between coarse and
fine grained services that meet the business needs. Techniques described
here help to determine the appropriate granularity of services and minimize
proliferation of services that are too fine-grained.

� Silo approach

The second antipattern involves what is commonly referred to as the silo
approach where services are identified based on isolated applications rather
than a applying more holistic, enterprise focus. In addition to the
recommendation mentioned earlier in this chapter to establish a governance
framework that ensures cross-tower service identification and
communications, the meet-in-the-middle approach emphasized within SOMA
promotes exploration and identification of common services and helps to shift
thinking towards modeling of services at the enterprise level.

Service specification
In this step, we identify and specify components that will be required to realize
services. Some major activities might include:

� identification of rules, services, attributes, dependencies and variation points
for each component.

� exploration of non-functional requirements required by consumers of the
services

� specification of messaging, event specifications and management definition

� state management decisions
 Chapter 4. The SOA transition process 99

7331ch04.fm Draft Document for Review January 29, 2007 3:05 pm
One of the most important activities within this step is to make crucial decisions
to determine which services should be exposed. Some high-level questions
related to service design analysis and principles can provide guidance in making
these determinations, yet there are many more aspects to take into
consideration:

� traceable

– Can the service be traced back to goals and objectives of the
organization?

� stateless

– Does the service require information or state between requests?

� discoverable

– Can the service be exposed externally to the enterprise?

– Does the service have a well defined interface and externalized service
description?

� reusable

– Does the service serve the interest of other processes?

– Can this service be reused to realize many higher-level business
processes?

Service allocation
In this step, we assign services to subsystems identified during previous
activities. In addition, we assign services and components that realize them to
layers in the SOA as depicted in Figure 4-3 on page 101. A key activity within this
step is documenting architectural decisions that relate to both application and
technical operational architecture designed and used to support the SOA
realization at runtime.
100 SOA Architcture Handbook for z/OS

Draft Document for Review January 29, 2007 3:05 pm 7331ch04.fm
Figure 4-3 Layers of SOA

Through these techniques, we ensure that we find a place for all services and
that they can be traced back to business goals and components.

Antipattern: componentless services
There is a tendency to jump directly into development and implementation of
Web services without clear association with owning components. This
antipattern typically occurs in projects where there is a lack of architectural
discipline. Architecture patterns are neither considered nor applied.

Once again, lack of good service modeling and design techniques ultimately
result in serious violations of basic principles such as modular design,
information hiding, encapsulation and layering. These issues can lead to
significant cost and effort related to potential reengineering.

In addition to leveraging J2EE and general EAD best practices, application of
SOMA techniques such service allocation will help in avoiding occurrences of
this antipattern.

Service realization
Realization is a key architectural step that involves the exploration of alternatives
to realize the implementation of services. In addition, we identify and assess
technical constraints to ensure technical feasibility of realization of services
specifically for those identified during existing asset analysis

Atomic Service Composite Service Registry

Services
atomic and composite

Operational Systems

Service Components

Consumers

Business Process
Composition; choreography;
business state machines

Service Provider
Service C

onsum
er

Integration (Enterprise Service B
us)

Q
oS Layer (Security, M

anagem
ent &

M
onitoring Infrastructure Services)

D
ata A

rchitecture (m
eta-data) &

B
usiness Intelligence

G
overnance

Channel B2B

Packaged
Application

Custom
Application

OO
Application
 Chapter 4. The SOA transition process 101

7331ch04.fm Draft Document for Review January 29, 2007 3:05 pm
Alternatives for implementation of services goes beyond buy versus build. Some
realization alternatives are:

� building new component functionality (custom build).

� Transforming legacy to enable reuse of functionality exposed as services.

� Integrating by wrapping existing systems.

� Buying and integrating with third-party products.

� Subscribing and outsourcing parts of the functionality, especially with Web
interfaces. Subscription assumes that an enterprise application integration
model has been implemented and there are services to subscribe to, in a hub
and spokes architecture.

Transformation considerations
A service’s implementation can be realized by wrapping an existing system with a
message queue service or a Web service. However, in many cases, mere
exposure of existing functionality is not sufficient. Componentization of the
existing system or a small subset of the system must take place to properly
expose the functionality required. A key factor is the scope of the
componentization. Avoid a common tendency to break the entire existing system
down into parts. Select an appropriate subset and transform it through
componentization.

Antipattern: chatty services
Similar to the identification and specification steps, there are antipatterns related
to realization of a SOA. Though all three steps prescribed within SOMA provide
techniques to avoid occurrence of these antipatterns, the consequences of this
particular pattern are more related to realization.

In many cases, developers are asked to begin direct replacement of existing
APIs with Web services without much thought to the benefits of SOA and
conformance to SOA design and architecture principles. This antipattern,
referred to as chatty services stemming from a chatty dialog communicating
small pieces of information, may result in severe degradation in performance. In
addition, significant development costs may be incurred to aggregate the
fine-grained services into a service model that can actually realize benefits of
SOA. Guidance and techniques to avoid occurrence of this antipattern really
spans all three steps of SOMA.

� At the identification step, the meet-in-the-middle approach can help to ensure
completeness of the model, attain an appropriate level of service granularity
and ensure that there is traceability back from the service to business
objectives and goals of the enterprise.
102 SOA Architcture Handbook for z/OS

Draft Document for Review January 29, 2007 3:05 pm 7331ch04.fm
� At the specification step, application of a litmus test considering key service
design principles can help to make the appropriate decisions involving service
exposure.

� At the realization step, we assess the technical feasibility of services identified
through existing asset analysis to further validation the decision of services to
be exposed.

Summary
In summary, experience shows that service-oriented modeling, analysis, and
design is necessary to build an SOA. It is important to reiterate some of the key
aspects and benefits of SOMA:

� Techniques are designed to enable target business processes through
identification, specification and realization of business aligned services
forming the foundation of a SOA

� Builds SOAs that align clients' business goals and directly ties business
processes to underlying applications through services, helping businesses
realize benefits more rapidly.

� Approach helps to ensure that goals set by business process modeling can
actually be implemented to generate the greatest result in an efficient manner.

Application of these best practices, guidelines and techniques in identification of
services and solutions can help to realize the many benefits offered through
SOA.

For additional information about the identification of services and solutions, refer
to the following sources:

� Redbook: Patterns: SOA Foundation Service Creation Scenario, SG24-7240:

http://www.redbooks.ibm.com/abstracts/sg247240.html

� Service Oriented Modeling and Architecture:

http://www.ibm.com/developerworks/webservices/library/ws-soa-desi
gn1/

� Elements of Service-Oriented Analysis and Design:

http://www.ibm.com/developerworks/webservices/library/ws-soad1/

� SOA realization: Service design principles:

http://www.ibm.com/developerworks/webservices/library/ws-soa-desi
gn/

� IBM SOMA and/or IBM SOA:

http://www.ibm.com/services/soa
 Chapter 4. The SOA transition process 103

http://www.ibm.com/developerworks/webservices/library/ws-soa-design1/
http://www.ibm.com/developerworks/webservices/library/ws-soad1/
http://www.ibm.com/developerworks/webservices/library/ws-soa-design/
http://www.ibm.com/services/soa
http://www.ibm.com/developerworks/webservices/library/ws-soa-design1/
http://www.ibm.com/developerworks/webservices/library/ws-soa-design1/

7331ch04.fm Draft Document for Review January 29, 2007 3:05 pm
4.1.2 Service Integration Maturity Model (SIMM)

Service Integration Maturity Model (SIMM) was originally created as a way to
judge the maturity (or readiness) of an organization and their business
environment to move toward a SOA. The SIMM engagement or workshop is
conducted at a fairly high level with facilitators as well as business and technical
Subject Matter Experts (SME) from the organization being reviewed.

A SIMM engagement may involve many steps, but may be reduced to a set of
key steps, e.g. to identify key pain points, and therefore places where the most
return for minimal work may be obtained. It is also a good way for groups to get
started with SOA by helping to identify a project that may be low hanging fruit.

A pain point is a way of identification of problem areas in the business unit which
prevent alignment with business goals. Pain points come in many forms,
including business process problems, legacy application problems, staffing,
funding, capacity, or skills. In addition, pain points may have emerged from rapid
changes in the business environment. SIMM uses pain points to start to identify
opportunities to improve the business unit processes and applications while
aligning with an SOA+ approach.

SIMM helps define a roadmap for incremental IT transformation linked to
business transformation.

Service Integration maturity is assessed using different views, as illustrated in
Figure 4-4 on page 105.
104 SOA Architcture Handbook for z/OS

Draft Document for Review January 29, 2007 3:05 pm 7331ch04.fm
Figure 4-4 The Service Integration Maturity Model (SIMM)

Views assessed in SIMM are:

� Business

How well does the business understand, design, implement and execute its
business processes?

� Organization

How effective is the Business/IT organization?

� Methods

How well are business goals understood by IT?

� Application

How well can the IT team perform its mission?

� Architecture

How advanced is IT thinking?

� Information

How the core data operations are performed, transformed and the data is
managed within the enterprise?

� Infrastructure

How capable is the IT plant?

Silo Services
Composite

Services
Virtualized
Services

Dynamically
Re-Configurable

ServicesComponentizedIntegrated

Level 1 Level 4 Level 5 Level 6 Level 7Level 3Level 2

Applications

Methods

Organization

Infrastructure

Architecture

Business View

Modules Services
Process

Integration via
Services

Dynamic
Application
Assembly

ComponentsObjects

Structured
Analysis &

Design

Service
Oriented
Modeling

Service
Oriented
Modeling

Grammar
Oriented
Modeling

Component
Based

Development

Object
Oriented
Modeling

Ad hoc IT
Governance

Emerging SOA
Governance

SOA and IT
Governance
Alignment

SOA and IT
Governance
Alignment

Ad hoc IT
Governance

Ad hoc IT
Governance

SOA and IT
Governance
Alignment

Service
Oriented
Modeling

Process
Integration

via Services

Platform
Specific

Platform
Specific

Platform
Neutral

Dynamic
Sense &
Respond

Platform
Specific

Platform
Specific

Monolithic
Architecture

Emerging
SOA

Grid Enabled
SOA

Dynamically Re-
Configurable
Architecture

Component
Architecture

Layered
Architecture SOA

Platform
Specific

Function
Oriented

Service
Oriented

Service
Oriented

Service
Oriented

Function
Oriented

Function
Oriented

Service
Oriented
 Chapter 4. The SOA transition process 105

7331ch04.fm Draft Document for Review January 29, 2007 3:05 pm
Working the way through the model, current maturity and future to-be state is
assessed.

Figure 4-5 Service Integration Maturity Model Assessment

Using the gap between to-be and current state, action items are developed. This
is illustrated in Figure 4-6 on page 107.

Silo Services
Composite

Services
Virtualized
Services

Dynamically
Re-Configurable

ServicesComponentizedIntegrated

Level 1 Level 4 Level 5 Level 6 Level 7Level 3Level 2

Applications

Methods

Organization

Infrastructure

Architecture

Business View

Modules Services
Process

Integration via
Services

Dynamic
Application
Assembly

ComponentsObjects

Structured
Analysis &

Design

Service
Oriented
Modeling

Service
Oriented
Modeling

Grammar
Oriented
Modeling

Component
Based

Development

Object
Oriented
Modeling

Ad hoc IT
Governance

Emerging SOA
Governance

SOA and IT
Governance
Alignment

SOA and IT
Governance
Alignment

Ad hoc IT
Governance

Ad hoc IT
Governance

SOA and IT
Governance
Alignment

Service
Oriented
Modeling

Process
Integration

via Services

Platform
Specific

Platform
Specific

Platform
Neutral

Dynamic
Sense &
Respond

Platform
Specific

Platform
Specific

Monolithic
Architecture

Emerging
SOA

Grid Enabled
SOA

Dynamically Re-
Configurable
Architecture

Component
Architecture

Layered
Architecture SOA

Platform
Specific

Function
Oriented

Service
Oriented

Service
Oriented

Service
Oriented

Function
Oriented

Function
Oriented

Service
Oriented

= current level

= target level
106 SOA Architcture Handbook for z/OS

Draft Document for Review January 29, 2007 3:05 pm 7331ch04.fm
Figure 4-6 Service Integration Maturity Model with illustrating actions

4.1.3 SOA Readiness Assessment

The SOA Readiness Assessment is a questionnaire tool based on the SOA
maturity model. SOA capabilities are assessed, in the area where a company
stands when it comes to adopting SOA.

With targeted recommendations for improving the maturity level, the IBM SOA
assessment tool can help unlock the full value of SOA.

For additional information
Refer to the following sources for more information:

� IBM SOA homepage:

http://www.ibm.com/soa/

� SOA Readiness Assessment:

http://www.ibm.com/software/solutions/soa/soaassessment/index.htm
l

Silo Services
Composite

Services
Virtualized
Services

Dynamically
Re-Configurable

ServicesComponentizedIntegrated

Level 1 Level 4 Level 5 Level 6 Level 7Level 3Level 2

Applications

Methods

Organization

Infrastructure

Architecture

Business View

Modules Services
Process

Integration via
Services

Dynamic
Application
Assembly

ComponentsObjects

Structured
Analysis &

Design

Service
Oriented
Modeling

Service
Oriented
Modeling

Grammar
Oriented
Modeling

Component
Based

Development

Object
Oriented
Modeling

Ad hoc IT
Governance

Emerging SOA
Governance

SOA and IT
Governance
Alignment

SOA and IT
Governance
Alignment

Ad hoc IT
Governance

Ad hoc IT
Governance

SOA and IT
Governance
Alignment

Service
Oriented
Modeling

Process
Integration

via Services

Platform
Specific

Platform
Specific

Platform
Neutral

Dynamic
Sense &
Respond

Platform
Specific

Platform
Specific

Monolithic
Architecture

Emerging
SOA

Grid Enabled
SOA

Dynamically Re-
Configurable
Architecture

Component
Architecture

Layered
Architecture SOA

Platform
Specific

Function
Oriented

Service
Oriented

Service
Oriented

Service
Oriented

Function
Oriented

Function
Oriented

Service
Oriented

= current level

= target level

Employ Business
Service

Decomposition
Form an SOA

Center of
Excellence

Re-engineer
Development

Process

Adopt Process
Choreography

Assembly Model

Introduce
Open

Standards

Focus
Architectures on

Service Orientation
 Chapter 4. The SOA transition process 107

http://www.ibm.com/developerworks/webservices/library/ws-soa-design/
http://www.ibm.com/developerworks/webservices/library/ws-soa-design/
http://www.ibm.com/developerworks/webservices/library/ws-soa-design/

7331ch04.fm Draft Document for Review January 29, 2007 3:05 pm
4.2 Tools to assist in the SOA transformation process

Many efforts to move from the core system “starting scenario” to a target
scenario involve some amount of analysis of existing source code and possibly
extraction of business logic and/or rewrite of the existing code to create
SOA-compliant services.

IBM has defined the “SOA Lifecycle” as four stages in a closed loop process:
Model, Assemble, Deploy, and Manage (see 2.3.4, “IBM SOA lifecycle” on
page 15 for more details on the SOA Lifecycle). The SOA Lifecycle defines most
of the key tasks necessary to create new SOA-compliant services AND to
service-enable existing core applications.

The process of core system modernization (also known as “enterprise
transformation” or “legacy modernization”) falls primarily in the Assemble stage of
the SOA Lifecycle. That process involves a number of key steps:

� discovery of existing code modules and other assets (JCL, system definition
files, etc.)

� discovery of interrelationships between artifacts

� deep investigation of existing code and data structures to identify service
definitions and business rules

� refactoring of code structure to “clean up” source code for efficiency,
performance, reuse and readability purposes

� programming work to make modifications to discovered or refactored source
code

� version control and storage of application artifacts before, during, and after
the re-engineering process

These application development-specific activities within the SOA Lifecycle fall
within a Business-Driven Development (BDD) process, as illustrated in
Figure 4-7 on page 109.
108 SOA Architcture Handbook for z/OS

Draft Document for Review January 29, 2007 3:05 pm 7331ch04.fm
Figure 4-7 The Business Driven Development process

In this section we are concentrating on the development/re-engineering aspects
of the BDD process (lower right side of Figure 4-7). Later in the book we will
discuss what is needed for the Deploy and Manage stages of the SOA Lifecycle
and the associated aspects of this Business-Driven Development process.

4.2.1 Tools used in the Model stage

Over the last several years, a number of tools have been developed to assist the
architect and application developer in modeling, coding and assembling
applications. There has been much attention paid to object-oriented design and
modeling. Tools that work with the Unified Modeling Language (UML)1 have been
used for OO-based application analysis and design, data modeling, defining
object relationships, and describing the overall structure of the application.

While UML is still in use for these purposes, other more coarse grained, business
focused modeling tools are now in use for business modeling in SOA.
WebSphere Business Modeler is IBM’s key product for creating models of
business processes and coarse grained composite transactions.

And, WebSphere Integration Developer (WID) assists in transforming the
business processes defined using the WebSphere Business Modeler into a
Business Process Execution Language (BPEL) representation. This

Model the
Business
Model the
Business Define

Requirements
Define

Requirements

Analyze
& Design
Analyze

& Design

ImplementImplement

TestTest
DeployDeploy

ManageManage

OptimizeOptimize

Executive

Application
Support

Architect
Project Manager

Tester

Deployment
Manager

Developer

BusinessBusiness

DevelopmentDevelopmentOperationsOperations

Manage change
& assets

Manage change
& assets

Prioritize Plan Manage Measure

Optimize Iterate

End User

Operations
Manager

AnalystGovernGovern

1 http://www.uml.org/
 Chapter 4. The SOA transition process 109

http://www.uml.org/

7331ch04.fm Draft Document for Review January 29, 2007 3:05 pm
BPEL-defined process can later be run and managed using a run-time engine
such as the WebSphere Process Server (WPS).

Since this chapter concentrates on the underpinnings for core system service
enablement, we will not examine those tools in detail here. Tools such as the
WebSphere Business Modeler are used primarily in “top-down” application
designs, where the process or composite application are defined first, and this
design drives the underlying service granularity. In this chapter, we are looking at
service enablement from the “bottom-up,” where existing applications are
migrated to an SOA-compliant form using several transformation techniques,
discussed in 4.3.3, “Transition approaches” on page 122.

In addition to modeling processes and applications, the developer and architect
must also manage requirements. IBM’s Rational RequisitePro® tool can be used
for requirements gathering and management, to feed the process of
re-engineering existing code assets or for construction of new services.

4.2.2 Discovery and refactoring tools used in the Assemble stage

From an application modernization and transformation perspective, the artifacts
that are produced from the Model stage of the SOA Lifecycle are primarily
process models and service definitions that come from the modeling tools such
as WebSphere Business Modeler, WebSphere Integration Developer (WID), and
Rational Software Architect (RSA). In “Service identification” on page 98, the
concept of “bottom-up” versus “top-down” versus “meet-in-the-middle”
development was discussed.

The Assemble stage is where the “meet-in-the-middle” occurs. Models created
during the Model stage are combined with the services created during the
Assemble stage to form composite applications. But in order to create those
services, much discovery and analysis of existing assets must take place to
harvest source code and business rules and to maximize reuse of those existing
assets.

WebSphere Studio Asset Analyzer
WebSphere Studio Asset Analyzer (WSAA) is a static analysis tool that provides a
developer or an architect with a high-level view of the application inventory, and
optionally allows them to drill down into the application to examine its stucture
and determine component inter-relationships. Dependencies between the
application artifacts can be observed, and those dependencies can be used to
determine the level of effort needed to make appropriate modifications or
rewrites to the application for SOA enablement.

WSAA is referred to as a “static analysis” tool because it only analyzes what the
administrator tells it to - there is no awareness of running applications. If a
110 SOA Architcture Handbook for z/OS

Draft Document for Review January 29, 2007 3:05 pm 7331ch04.fm
partitioned data set filled with source code is fed into WSAA, it will analyze it,
even if that code has not actually executed in decades. Dynamic tools, such as
the CICS Interdepedency Analyzer, collect data on running systems and provide
information on components actually in use. However, this information is not as
complete as that provided by WSAA (since source and other related artifacts are
not available at run-time). In addition, dynamic tools may not catch information on
programs that run only on occasion, such as monthly or year-end jobs.

The high-level architecture of WSAA is shown in Figure 4-8.

Figure 4-8 WebSphere Studio Asset Analyzer (WSAA) overview

Note that WSAA is not restricted to host assets - it can also examine and report
on artifacts from Java, C++, and other Web and distributed applications. The
artifacts are fed to the WSAA inventory process engine, WSAA adds the artifacts
to the DB2-based repository, and then the user, either via a Web or Web services
(used by other non-browser tools) interface, can perform inquiries and analysis
on those artifacts added to the repository.

The results of a typical WSAA query are shown in Figure 4-9 on page 112. Here,
a batch job is decomposed, showing the job steps and the DD names (files) used
by the job. If possible, the sub-components are hot-linked so the user can drill
down and examine the various parts of the job (programs, files, databases, etc.)
 Chapter 4. The SOA transition process 111

7331ch04.fm Draft Document for Review January 29, 2007 3:05 pm
Figure 4-9 Batch job analysis in WebSphere Studio Asset Analyzer

A moderate amount of detail about program content, including the ability to
browse source code, is available through WSAA, which is intended to provide a
high-level view of the application structure and interdependencies between
components. However, detailed analysis and decomposition of program assets is
better accomplished in the Asset Transformation Workbench, discussed in the
next section..

Asset Transformation Workbench
The IAsset Transformation Workbench2 (ATW) provides detailed reports, metrics
and visualizations of existing mainframe applications. The foundation of ATW is a
knowledge base that contains information that describes the applications.
Surrounding the knowledge base are a number of key capabilities and features3:

2 ATW is provided by Relativity Technologies and is resold by IBM under the “Asset Transformation
Workbench” name.

3 Feature descriptions for ATW can be found at
http://www-306.ibm.com/software/awdtools/atw/features/
112 SOA Architcture Handbook for z/OS

http://www-306.ibm.com/software/awdtools/atw/features/

Draft Document for Review January 29, 2007 3:05 pm 7331ch04.fm
� Detailed reports, metrics, documentation, and visualizations of the enterprise
applications are readily accessible to project leaders and architects using the
workbench.

� A browser-based module to allow team members to use ATW-generated
reports

� Integration with IBM WebSphere Studio Asset Analyzer to allow users to
perform high-level analysis in WebSphere Studio Asset Analyzer and pass
the application insight through a software bridge for use in Asset
Transformation Workbench

� Powerful analysis and assessment tools to help accelerate ongoing
maintenance and enhancements

� Tools to expose and help manage business rules, which can simplify
application reuse for SOA initiatives

� Re-architecting tools to help increase the productivity of teams restructuring
and componentizing applications

� A Reuse Analyzer for ATW (technical preview) to help quickly assess an
application's suitability for reuse in a SOA

There are several main components of ATW (see Figure 4-10 on page 115) that
use the knowledge base:

� Application Analyzer
The Application Analyzer is a non invasive interactive module that creates a
comprehensive repository of system relationships including source code,
system files, data definition language (DDL), screen maps, and more. It can
help perform impact analysis, generate interactive graphical system
diagrams, create system documentation, and browse source code in
context-sensitive mode.

� Application Profiler
The Application Profiler provides technical and business users with
information to effectively understand and plan enterprise applications, without
impacting the source code. It is a browser-based tool and provides users such
as support, quality assurance, and business analysts insight into systems
without requiring specialized knowledge or skills. Technical users that are
unfamiliar with their enterprise applications can use Application Profiler to
access documentation, understand system structure, and determine the
impact of code changes. Non-technical or business users can use Application
Profiler to examine system-level reports and to assess where to direct
resources in order to enhance or renovate the application portfolio. When
used with the Business Rules Extension, the Application Profiler module can
help organize and annotate business rules without disturbing development.
 Chapter 4. The SOA transition process 113

7331ch04.fm Draft Document for Review January 29, 2007 3:05 pm
� Business Rules Extension
The Business Rules feature is an optional extension that helps navigate
complex code and identify, document, and organize business rules. It
identifies candidate rules using developer-driven sophisticated search
algorithms. This process generates a list of rules for the targeted application,
allowing analysts to view each rule and verify its inclusion. After rules have
been found they can be documented and organized, allowing future users to
understand the use of each rule. And because the rules are tagged, analysts
can locate the rules within the code and modify them to respond to business
process changes.

� Application Architect
The Application Architect feature is an optional extension that uses
sophisticated algorithms to partition code into new components. The
componentization of logic results in a structured architecture that can reduce
complexity and facilitate modernization. By componentizing enterprise code,
developers are able to greatly increase the performance of frequently used
programs. Application Architect can help to ensure that the components
created are complete, working programs in accordance with the functionality
of the original application.

� Reuse Analyzer
The Reuse Analyzer extension (in ATW Version 2.1, a “technology preview”)
can:

– Categorize CICS and IMS programs written in COBOL by the type of work
they do (screen, business logic, data access, hybrid, etc.).

– Identify some potential architectural "traps" that would require remediation
before making a particular program or program call hierarchy available as
a Web service.

– Create Web Services Description Language (WSDL) files corresponding
to selected data elements in your program you wish to make available in a
Web service. (A WSDL file can then be used with XML Services for the
Enterprise, which is a feature of WebSphere Developer for zSeries.)
114 SOA Architcture Handbook for z/OS

Draft Document for Review January 29, 2007 3:05 pm 7331ch04.fm
Figure 4-10 Asset Transformation Workbench features

The Asset Transformation Workbench is used when a detailed view of the
application is needed for work on re-engineering an application. The WebSphere
Studio Asset Analyzer is used when a higher level view of the application assets
is needed.

ATW is a participant in the Model stage of the SOA Lifecycle, but it also has some
participation in the Assemble stage, as it provides key features, such as the
Application Architect and Reuse Analyzer, that assist in the actual code creation.

4.2.3 Code development tools used in the Assemble stage

Once discovery has been conducted and the appropriate code resources have
been identified for reuse or redevelopment, business rules have been isolated,
and data structures have been determined - this is the “Analyze and design”
portion of the Business Driven Development model (see Figure 4-7 on
page 109), the next step is the actual service creation, which is referred to as
“Implement” in the BDD model.

The Asset Transformation Workbench, discussed in section “Asset
Transformation Workbench” on page 112, can be thought of as a partial
participant in this stage, as there is some modification of code that can be done
with ATW. The Application Architect component permits the developer to refactor
the existing code by partitioning it into better structured components. But it is not
an Integrated Development Environment (IDE) intended for writing code.

Reuse
Analyzer
 Chapter 4. The SOA transition process 115

7331ch04.fm Draft Document for Review January 29, 2007 3:05 pm
WebSphere Developer for zSeries
IBM’s WebSphere Developer for zSeries (WDz) is a superset of the Rational
Application Developer IDE for Java development. WDz adds the ability to build
applications and services using traditional programming languages, including
COBOL, PL/I and Assembler.

WDz enables the host developer with the same kind of tools that have
traditionally been available only to distributed system developers. It can be used
to build new SOA-compliant services and to re-engineer existing host programs
to participate in an SOA. It is ideal for equipping traditional host developers with
new tooling that will improve their productivity, while equipping them to transition
to a Java-based development model, or to equip Java developers with the ability
to work with mainframe code assets.

Some key features that WDz provides for the host developer include:

� Local or remote edit, syntax check and compile of COBOL, PL/I and
Assembler programs.

� Features including programming language “code assist” and automatic
generation of JCL (based on standardized skeletons) to reduce complexity for
inexperienced host developers.

� Interactive debugging of traditional language programs using the same kind of
debugger that workstation developers use - and with live code running on
z/OS.

� XML Services for the Enterprise (XSE), a feature that permits the developer
to generate service definitions from existing host applications or to generate
code for the mainframe using existing service definitions in WSDL.

� Enterprise Generation Language (EGL), a fourth-generation language (4GL)
that greatly simplifies development by enabling the developer to code
services using EGL and generate the executables either in COBOL or Java
(COBOL generation is unique to WDz).

� Job control and monitoring using the Remote System view to provide
functions similar to the SDSF function found under TSO.

� Support for the creation of CICS Web Services (CICS Transaction Server
V3.1).

� CICS Service Flow Modeler for creation of services and transaction flows that
execute under the CICS Transaction Server V3.1 Service Flow Feature (see
“Variation 2: CICS Service Flow Feature (CICS Transaction Server V3.1)” on
page 139 for more details)

Figure 4-11 on page 117 shows what a typical WDz session might look like.
116 SOA Architcture Handbook for z/OS

Draft Document for Review January 29, 2007 3:05 pm 7331ch04.fm
Figure 4-11 WebSphere Developer for zSeries

A WebSphere Developer for zSeries user can concentrate solely on
service-based development, or he can use WDz to build a complete, end-to-end
composite application. WDz includes the entire Rational Application Developer
toolset, so a developer can use frameworks such as Struts to develop a front-end
user interface and tie it to host services, written in traditional programming
languages, and coded using the z/OS Project or EGL perspectives.

4.2.4 Tools used in the Manage stage

4.2.5 Interrelationships between tools

The tools detailed in this section all work together within the SOA Lifecycle to
model, assemble, deploy and manage SOA-compliant composite applications.
Figure 4-12 on page 118 illustrates the interrelationship between the tools
mentioned here.

Author Comment: A section needs to be written on Manage tools.....
 Chapter 4. The SOA transition process 117

7331ch04.fm Draft Document for Review January 29, 2007 3:05 pm
Figure 4-12 An overview of the SOA development tools

4.3 A pattern-driven approach to transition from “core”
applications to services

IBM has established a methodology for designing IT systems that is based on
“patterns.” This methodology, under the umbrella of “Patterns for e-business”4
analyzes a problem in the following sequence:

1. examine customer requirements for the business problem

2. identify a business pattern that matches requirements

3. select an Integration or Composite pattern that narrows down how the
business problem is to be solved

4. select the appropriate application pattern that will determine how the
application logic is partitioned

5. select a corresponding runtime pattern for the IT infrastructure

6. use the product mapping for the runtime pattern to construct the specified
operational infrastructure

This pattern-driven approach accelerates the analysis and design of a solution by
leveraging prior experiences and the similarities between those and the new
business problem..

Development environment Run-time environment

Requirements
 (application & process)

Existing z/OS
applications

Rational
RequisitePro

WebSphere
Studio Asset

Analyzer

Asset
Transformation

Workbench

WebSphere
Developer for

zSeries

Rational
Application
Developer

WebSphere
Business
Modeler

WebSphere
Integration
Developer

WebSphere Process
Server

WebSphere
Application Server

CICS Transaction
Manager

IMS Transaction
Manager

Build traditional
language services

Build Java services

Build business processes Build I/T processes

Document requirements

High-level
asset analysis

Detailed source analysis
and re-engineering

DB2 Universal
Database (z/OS or

distributed)

4 http://www-128.ibm.com/developerworks/patterns/
118 SOA Architcture Handbook for z/OS

Draft Document for Review January 29, 2007 3:05 pm 7331ch04.fm
Similar to the approach used with the Patterns for e-business, it is appropriate to
use such a process for examining existing core system assets and designing a
solution based upon commonly-used “transition scenarios.” Through our
collective experiences and those of other organizations in IBM, such as IBM
Global Business Services, we have identified the “starting scenarios” described
in Chapter 3, “Starting scenarios” on page 53, the “SOA implementation
scenarios” that we examine in Chapter 5, “SOA implementation scenarios” on
page 129, and the sequence of events necessary to move from one to the other.

The transition scenarios target different SOA “ambition” levels, or different levels
of desired SOA maturity.

The use of techiques to move from “starting scenarios” to “implementation
scenarios” is an IT-centric technique. It does not necessarily take into account
the functional requirements of the application. It does, however, require
consideration of the needs of the business, as there are Non-Functional
Requirements (NFRs) that must be considered, including performance,
scalability, reliability, security, etc. These will drive the selection of particular
implementation technologies that fall within the end-point migration scenarios.

4.3.1 Starting scenarios

The starting scenarios have been identified and described in Chapter 3, “Starting
scenarios” on page 53. They require no further examination here.

4.3.2 Service interface patterns5

When analyzing the various core system transformation projects in the IT world
today, we see four basic service interface patterns emerge.

We have identified each of them with a single letter (N, A, R, and B).

Note: in the associated diagrams, P represents presentation logic, B represents
business logic, and D represents data access logic.

Native service interface (N)
The native service interface solution enables a core system for SOA by utilizing
SOA features that are native to the transaction server, database manager or
whichever infrastructure component hosts the application component.
Frequently, support for protocols such as SOAP, JMS or WebSphere MQ are
built-in to those systems. An example of this is the CICS Web Services support
included with CICS Transaction Server Version 3.1. In this new feature, existing

5 The Legacy Transformation Practice of IBM Global Services has documented these four patterns as “Native,” “Adapter,”
“Modularized,” and “Brokered”
 Chapter 4. The SOA transition process 119

7331ch04.fm Draft Document for Review January 29, 2007 3:05 pm
CICS transactions may be accessed directly in CICS using Web services
protocols (SOAP, WS-Security, etc.). The pattern is shown in Figure 4-13.

Figure 4-13 The native service interface pattern

Adapter-provided service interface (A)
In many cases, a core system is unable to communicate via service-oriented
protocols, as in the “native service interface” pattern. In these situations, an
adapter may be employed, if available, to translate between the proprietary
interface to the system and SOA-compliant protocols. The Adapter usually “lives”
outside the infrastructure component that hosts the application component to be
service-enabled. Adapters have been employed in the past to provide integration
with middleware such as Web application servers. In this pattern, the adapter
provides an interface to SOA-based calling services. This pattern is illustrated in
Figure 4-14.

Figure 4-14 The Adapter-provided service interface pattern

Brokered/mediated service interface (B)
It is often easier to employ an intermediary Enterprise Service Bus, or “broker,” to
provide the service interface to the transitioned core application. The ESB can
insulate the core application from the need to comply with new protocols, and it
can transform the message content so it can be processed by other services that
connect through the ESB.

P B D

Se
rv

ic
e

In
te

rfa
ce

Adapter

P B D

Se
rv

ic
e

In
te

rfa
ce Native

 Protocol

P B D

- or -
120 SOA Architcture Handbook for z/OS

Draft Document for Review January 29, 2007 3:05 pm 7331ch04.fm
Often, this brokered/mediated pattern involves the use of WebSphere MQ or
JMS as a message transport. But, most message broker and ESB products can
support multiple transport protocols, inbound and outbound.

Figure 4-15 The brokered/mediated service interface pattern

Redeveloped code with native service interface (R)
This pattern involves taking existing core system code and re-writing it to
conform to SOA-compliant structure and protocols. This often involves
refactoring the source code so it has a more “SOA-friendly” service structure.
The newly-modularized code would then be invokable directly via SOA-compliant
protocols, usually SOAP-over-HTTP or SOAP-over-JMS/MQ.

Figure 4-16 Refactoring of “big” program

Broker/
ESB
with

mediation

P B D

Se
rv

ic
e

in
te

rfa
ce JMS/MQ or

other
protocol

P B D

- or -

Refactored program

“big” program

P B D

P

Br DS

Br DS

Br DS

Service
interface
 Chapter 4. The SOA transition process 121

7331ch04.fm Draft Document for Review January 29, 2007 3:05 pm
Figure 4-16, illustrates how an application with presentation, code and data logic
highly dependant on each other is refactored into a clear separation of concerns.
Presentation logic is completely taken out of from the refactored program, and is
here considered to be a service consumer.

The refactoring pattern also covers how to find the right level of granularity on the
services that are exposed.

4.3.3 Transition approaches

As the architect examines the existing core system and determines its current
implementation, he/she must determine which transition approach to use for
service enablement. This will be driven largely by the technique chosen to
perform the migration.

The dependency between our service interface patterns and transition
approaches (Improve, Adapt and Innovate) is illustrated in Figure 4-17 on
page 122. Inside each stage of maturity (improve, adapt, innovate), we can apply
different service interface patterns (native, adapter, brokered/mediated and
redeveloped as discussed previously). There are different levels of ambitions and
cost associated with each step.

Figure 4-17 Levels of SOA maturity related to transition approaches

Silo-based applications.
No reuse of services

Separation of presentation
and business logic.

Reusable components
and services

Some level of Service
location transparency

Improve

Improve

Improve

Adapt

Innovate

Adapt

Innovate

3270 Client/
Server

Multichannel Home grown
SOA
122 SOA Architcture Handbook for z/OS

Draft Document for Review January 29, 2007 3:05 pm 7331ch04.fm
There are three primary approaches for transforming an existing core
application, as discussed in “Improve the application” on page 123 through
“Innovate by re-designing and re-developing the application” on page 124.

Improve the application
In the Improve approach we can distinguish between a flavor that involves a user
interface and a flavor that does not involve a user interface.

Improve approach with a user interface
In this approach, the user interface, usually a 3270 interface, is wrappered inside
a Web application server environment and at the same time the application
component is made callable as a service.

A common example is the wrapping of 3270 applications using middleware such
as IBM’s Host Access Transformation Services (HATS). HATS can be used to
wrap a native 3270 application as a Web Service, or to expose that 3270
application as a web server application.

Improve approach without a user interface
In this scenario we do not have an existing (3270) user interface and we only
need to “wrapper” the call to the business logic. The “wrapper” communicates
with the calling service using a standardized interface, and communicates with
the wrapped application using that application’s native protocol.

The use of the Improve approach usually leads to the adoption of the “N” (native
service interface) or “A” (Adapter-provided service interface) service interface
pattern, as dicussed in “Native service interface (N)” on page 119 and
“Adapter-provided service interface (A)” on page 120 respectively.

Adapt the application connectivity
This approach is a bit more intrusive to the existing application than “Improve”.

To Adapt the connectivity implies the separation of business logic from the
presentation and/or data logic. Once this is done, the business logic can be
accessed as a separate component and reused appropriately. Sometimes, an
existing core application is already “componentized” so that the business logic
can be accessed directly.

IBM has recommended this separation-of-concerns practice for CICS and IMS
developers for many years. But older code often has all tiers of logic intertwined,

Author Comment: Diagram needs to be updated.
 Chapter 4. The SOA transition process 123

7331ch04.fm Draft Document for Review January 29, 2007 3:05 pm
making it difficult to easily split the logic. In this case, either a less invasive
approach must be taken (Improve), or the application must undergo significant
change and redesign (Innovate, see “Innovate by re-designing and re-developing
the application” on page 124).

Use of the Adapt transition approach often leads to the adoption of the “N”, “A”,
or “B” service interface patterns, since it usually requires the partitioning of the
application logic.

Innovate by re-designing and re-developing the application
The Innovate approach is the most invasive to the application.

In this approach, the end result is a restructured, rewritten application that
natively conforms to SOA-compliant standards and protocols. However, it is
possible that the application may simply be partitioned and refactored, with all
mediation and connectivity logic left to the mediation layer (Enterprise Service
Bus).

The Innovated application is fully modularized so that it can be more easily
reused in the future.

Use of the Innovate approach usually leads to the adoption of the “R” or the “B”
service interface patterns.

4.3.4 Characteristics of the service interface patterns and transition
approaches

The transition approaches and associated service interface patterns a number of
advantages, disadvantages and differentiating characteristics, as shown in
Table 4-1.

Table 4-1 Characteristics of the service interface patterns and transition approaches

Service interface
pattern

Common
transition
approach

Complexity Relative cost Relative
performance

Native service
interface

Improve Low
Create a native
service interface
for existing code
code “as-is”

Low
Requires no extra
middleware, but
uses either a
“wrapper” or
built-in Web
services support.

Medium
124 SOA Architcture Handbook for z/OS

Draft Document for Review January 29, 2007 3:05 pm 7331ch04.fm
Native service
interface

Adapt Medium
Frequently
requires small
amount of code
modification to
access partitioned
business logic

Medium
Requires no extra
middleware, but
does require more
human interaction
to modify code

Medium to high
No intermediate
middleware, but
native transaction
manager must
translate between
SOA protocol and
native interface

Adapter-
provided service
interface

Improve or Adapt Low to medium
If “Improve”, no
changes to code.
Tooling and
middleware
accesses 3270
presentation logic
directly

If “Adapt”,
potential need to
partition code into
business and
presentation logic.

Additional
middleware is
required in both
cases.

Medium
Requires
additional
middleware

Code changes are
not significant,
particularly if an
Improve migration
technique is used.

Low to medium
Middleware layer
adds additional
overhead, but can
be mitigated if
middleware is
placed on same
OS instance with
application.

“Improve”
solutions incur
more overhead, as
original user
interface is still in
use, invoked by
adapter
middleware

Brokered Adapt Medium
Usually requires
little code change
if broker supports
native application
protocol or if
adapters are used

Medium to high
Although small
amount of code
change necessary,
more middleware
infrastructure
required.

Required
infrastructure can
mitigate code
changes and may
be required for full
SOA, regardless.

Medium
Intermediate
middleware
infrastructure
required, adding
some overhead,
but usually uses
native protocol
between broker
and application

Service interface
pattern

Common
transition
approach

Complexity Relative cost Relative
performance
 Chapter 4. The SOA transition process 125

7331ch04.fm Draft Document for Review January 29, 2007 3:05 pm
4.3.5 Applying the transition approaches and service interface
patterns

Similar to the Patterns for e-business, the use of starting and transition scenarios
for core system transformation also dictates a sequence of events that guide the
migration from an identified starting pattern to a SOA-compliant system.

The high-level view of the transition process:

1. Identify a starting scenario, based upon the existing core system attributes.
Chapter 3, “Starting scenarios” on page 53 provides a number oc common
starting scenarios.

2. Determine Non-Functional Requirements (NFRs) and Quality of Service
(QoS) requirements for the migrated system. The Service Level Agreements
(SLAs) play an important role here.

3. Based upon NFRs, QoS requirements and the desired SOA maturity level,
select the appropriate transition approach (Improve, Adapt or Innovate). We
discussed the Improve, Adapt and Innovate approaches earlier in this
chapter.

4. Decide on the desired service interface pattern, as discussed earlier in this
chapter. The choices are native service interface, adapter-provided service
interface, brokered/mediated service interface and redeveloped code with
native service interface.

Redeveloped Innovate High
Involves significant
re-engineering
and rewrite of
application code

High
Personnel cost for
code modification
is high. Tool cost
can be high, but
good tooling is
critical to success
of redevelopment.

High
redevelopment
cost can be offset
in the long run by
more efficient
development for
future SOA
applications.

Medium to high
Modernization can
result in more
efficient code and
modularization
that maximizes
efficiency of
composite SOA
applications.

Service interface
pattern

Common
transition
approach

Complexity Relative cost Relative
performance
126 SOA Architcture Handbook for z/OS

Draft Document for Review January 29, 2007 3:05 pm 7331ch04.fm
5. Choose the desired SOA implementation scenario(s). Refer to Chapter 5,
“SOA implementation scenarios” on page 129 for a catalogue of the most
useful scenarios.

6. Select the solution technique(s) that fit the technological environment.

7. Use appropriate core system modernization tools to perform the transition.

Attention: The above steps may have different outcomes for different
applications that need to be SOA-enabled. However, one of the things to keep
in mind is to try to focus on a common runtime for most of the new SOA
applications.
 Chapter 4. The SOA transition process 127

7331ch04.fm Draft Document for Review January 29, 2007 3:05 pm
128 SOA Architcture Handbook for z/OS

Draft Document for Review January 29, 2007 3:05 pm 7331ch05.fm
Chapter 5. SOA implementation
scenarios

This chapter will examine the process of moving from a certain starting scenario
(as discussed in Chapter 3, “Starting scenarios” on page 53) to different levels of
SOA enablement. It will cover:

� A general process for making architectural decisions, discussed in 5.1, “The
architectural decision process” on page 130.

� An analysis of how the three transition approaches (Improve, Adapt, Innovate)
can be used to accomplish the SOA enablement. We will provide runtime
topologies for each SOA implementation scenario. In some cases, the tools
needed to accomplish the migration will also be discussed.

� A brief review of the advantages and disadvantages of the different options for
each scenario/approach.

� A sample decision process review to illustrate how a company might select
the appropriate transition approach and technologies appropriate to the SOA
implementation scenario.

5

© Copyright IBM Corp. 2006. All rights reserved. 129

7331ch05.fm Draft Document for Review January 29, 2007 3:05 pm
5.1 The architectural decision process

After an architect has identified the starting scenario for the existing application,
the analysis process quickly moves to the question: “How should I make this
application SOA-enabled?” The selection of a transition approach and the
associated transition process is as much an art as a science. The architect must
take into account many technical factors, as well as some that have nothing to do
with the structure of the application or the existing IT infrastructure.

There are many architectural methodologies in the IT world. IBM uses several
design methods, including the IBM Global Services Method, TeAMethod,
Rational Unified Process (RUP), and a number of others originating inside and
outside IBM. In general, a methodology for creating a solution architecture
involves several basic steps:

1. examine the existing IT environment

2. analyze customer requirements, both functional and non-functional

3. study use cases to ensure requirements are met

4. define system context

5. develop architectural overview, based upon architectural decisions

6. develop operational (physical) architecture

There are several key areas of the architectural methodology that are of interest:

5.1.1 The existing IT environment

Many aspects of the existing IT environment will drive the selection of a particular
transition approach (Improve, Adapt, Innovate), service interface pattern (native
service interface, adapter-provided service interface, brokered/mediated service
interface or redeveloped code) and SOA implementation scenario. For example:

� What are the current release and maintenance levels of the z/OS-based
transaction and database managers (IMS, CICS, DB2, WebSphere, other
non-IBM systems)?

� What products are installed?

� What existing “SOA infrastructure” products are installed (for example,
WebSphere Application Server, WebSphere MQ, WebSphere Process
Server, etc.)?

� What languages and compilers are in use?

� What language(s) was used to create the application in question?

� What IT architecture and product standards are in place?
130 SOA Architcture Handbook for z/OS

Draft Document for Review January 29, 2007 3:05 pm 7331ch05.fm
� and many others...

Most of the transition approaches have multiple options for implementation, and
several of the solution techniques require certain products or releases to be
present. The presence or lack of a required product will often drive the decision
to a particular variation.

5.1.2 Functional and non-functional requirements

Functional requirements describe what a solution does. Non-Functional
Requirements (NFRs) describe how a solution does what it does. An example of
a functional requirement is “the solution must present a window with the
customer’s name, address and phone number”. An example of a non-functional
requirement is “the solution must provide one second response time to the
end-user.”

Note that we dicuss the QoS of the z/OS platform associated to the NFRs
dicussed in this section in more detail in Chapter 8, “SOA and z/OS QoS” on
page 267.

When selecting a transition approach to enable an application for SOA, the
Non-Functional Requirements tend to be the most important to making
decisions. The Non-Functional Requirements that are of greatest interest
include:

� Performance
How “fast” must the solution function? Is the measurement of end-user
response time or internal? The use of Service Level Agreements (SLA) is
important - is the performance of the solution meeting the requirements
agreed upon by the end-user community?

– When selecting a solution, choose the option that provides optimal
performance while still fulfilling the remainder of the functional and
Non-Functional Requirements. The best performing solution is not always
the best solution overall.

� Scalability
An application that scales is one that can provide an increased transaction
load without impacting the Quality of Service provided. Different infrastructure
options provide differing scalability options. For example, a message broker
on a particular server model can process a certain number of messages per
second. How can that number be increased (scaled)? By adding more server
instances (horizontal scaling)? By increasing the capacity of the hardware
(vertical scaling)?
 Chapter 5. SOA implementation scenarios 131

7331ch05.fm Draft Document for Review January 29, 2007 3:05 pm
– When selecting a solution, ensure that the technical variation uses
components that can be scaled to increase the transaction rate to meet
requirements.

� Flexibility
Flexibility is a rather nebulous concept, but an important one. One of the key
aspects of SOA is to provide a more flexible environment for implementing
new applications and changing existing ones. SOA introduces flexibility by
abstraction of functions such as network protocols, mediation of message
content, workflow, and provides separation of business logic from the other
parts of the application. This allows the developer to more easily assemble
composite applications from the “parts” - the services.

– When selecting a solution, ensure that flexibility is maximized while
maintaining the other requirements. A more flexible solution may save
money in the long run, even though it may introduce additional
performance overhead or other “negatives.”

� Reliability and Availability
Reliability and it’s related concept, availability, define how resilient the
application is to failures in the application itself and in the hardware and
software infrastructure that supports it. Reliability and availability are
impacted by the complexity of the infrastructure (points of failure) and the
means by which the components recover from failure. Often, mechanisms
such as server clustering and failover can improve reliability and availability by
maintaining application availability even though one instance of the
infrastructure component or application has failed.

– When selecting a solution, be aware of the ways that the components
maintain availability. Some variations have more complex infrastructures
than others, and as a result have more potential points of failure. Be
prepared to mitigate potential failure points by using the middleware
facilities such as clustering. Resist the temptation to eliminate middleware
simply because of availability issues - often, middleware provides value
that offsets its potential for failures. Removing a component such as an
ESB may slightly improve overall availability, but it can greatly reduce the
flexibility of the solution, incurring additional cost.

� Security
Security requirements usually relate to two functions: authentication and
authorization. How does the solution allow for the verification of the
individual’s identity, and how does it authorize the user to access resources?
Also, functions such as encryption and key management are important to the
security of SOA-based solutions. Some computing platforms (z/OS, for
example) tend to be inherently more secure than others. Platform security
usually depends on the presence of operating system security managers,
such as RACF, or other inherent hardware or software security features,
132 SOA Architcture Handbook for z/OS

Draft Document for Review January 29, 2007 3:05 pm 7331ch05.fm
including mainframe features like hardware-based encryption, storage protect
keys, and built-in public-key certificate infrastructures.

– When selecting a solution, consider the security features of the platform
where the services and the infrastructure will reside. Consistent with SOA
principles, make sure that as many of the security functions as possible
can be externalized from the services and defined in security
infrastructure.

� Skills
The presence or lack of skills is often one of the main architectural decision
criteria. Does the programming staff have skill in the needed programming
languages? Does the proposed solution introduce new infrastructure
components that will require training? How many administrators will the
solution require? Does the solution introduce new operating systems? The
cost of acquiring skill and the personnel with the skills must be considered
when designing the solution.

– When selecting a solution, consider the types of skills necessary, in
service development and in administration of the middleware included.
While an SOA implementation is intended to reduce development time and
simplify the development process, it often increases the complexity of the
infrastructure, and new skills may be needed to administer the underlying
SOA middleware.

� “Organizational ideology”
The “ideology” (sometimes known as “politics”) of the organization can be the
most sensitive decision point to deal with when designing a solution.
Everyone, even consultants who are supposed to be “unbiased,” has personal
preferences. There is often an institutionalized bias against particular
solutions. For example, a team may have had a bad vendor experience or
dealt with a product that was particularly buggy, and therefore has a bias
against that vendor or product. The corporate or IT leadership may have been
hired from another company that did things a certain way, and their familiarity
with that method or technology influences their decisions. There are many
factors that influence organizational ideology, and not all of them are based on
fact or logic. The architect must be aware of these “preferences” and design a
solution that takes them into account

– When selecting a solution, be aware of the informal preferences of the
organization, particularly of those who will be approving the architectural
decisions. If selecting an infrastructure component or a platform that is in
jeopardy due to ideology issues, be prepared to back the selection with
reasonably unbiased evidence and comparisons with other options. The
use of a standardized architectural decisions document is a good
approach for documenting the decision process.
 Chapter 5. SOA implementation scenarios 133

7331ch05.fm Draft Document for Review January 29, 2007 3:05 pm
5.1.3 The architectural overview and operational architecture

The IT architect is often tempted to jump directly to the creation of the
architectural overview and definition of a physical/operational architecture
without performing a complete analysis and architectural decision process (a
“dinner napkin” design). However, the other steps in the process mentioned
above are critical to arriving at a working architecture that is well-documented
and justifiable to the decision-makers in the enterprise.

The definition of the target architecture by using the pattern-based approach in
this book helps build an architecture overview and physical architecture by using
established patterns, rather than by “building from scratch.” The patterns
described in this book are not the complete solution, but are starting points for
building the architectures that enable migration to an SOA-based architecture
from the starting scenarios described earlier.

5.1.4 Selecting a transition approach and solution technique

The architectural decision process detailed in 5.1, “The architectural decision
process” on page 130 should be applied to the selection of the transition
approach, solution technique and SOA implementation scenario. An architect
has to find answers to the following questions:

� What is the current IT infrastructure?
Depending upon the existing IT environment, some of the solution techniques
may or may not make sense. Some solution techniques require specific
products and/or releases.

� What does the existing core application do? How is it implemented

� What starting scenario does the existing application map to?

� What are the requirements for the new, SOA-compliant service that is being
designed?
In particular, the Non-Functional Requirements will drive the selection of a
solution technique.

� How much time and effort can we expend on this - is this a “quick-fix” project,
or are we building a service that is expected to have a long “life-span?”
The answer to this question will provide much insight to determine whether to
use an “Improve,” “Adapt,” or “Innovate” transition approach to modernization
and service enablement.

� What resources and skills are available to perform the work?
If developer resources are scarce, then a transition approach or solution
technique that depends upon code changes may not be a good idea. Or, if an
organization has no Java resources and the solution is based on WebSphere
Application Server and Java, then that solution may not be a good choice.
134 SOA Architcture Handbook for z/OS

Draft Document for Review January 29, 2007 3:05 pm 7331ch05.fm
� How much money is available?
If funding is not available, a solution technique that requires new infrastructure
may not make sense.

Given the answers to these and other questions, the architect can examine the
transition approaches and solution techniques and determine which approach
and solution technique is best for the organization. The architect should evaluate
each option with those questions and the NFRs in mind.

5.2 SOA implementation scenarios for 3270 application

This section describes variations of the SOA implementation scenarios for 3270
applications. We described the typical 3270 application as a starting scenario in
3.1, “Starting scenario - 3270 application” on page 55. Table 5-1 provides a list of
the variations discussed throughout this section.

Table 5-1 Summary of 3270 transition variations

Transition approach Variation Described in

Improve Variation 1: service
enablement of 3270
prgrams using IBM Host
Access Transformation
Services (HATS)

“Variation 1: IBM Host
Access Transformation
Services (HATS)” on
page 138

Improve Variation 2: service
enablement of CICS
transactions using the
CICS Service Flow
Feature (CICS Transaction
Server V3.1)

“Variation 2: CICS Service
Flow Feature (CICS
Transaction Server V3.1)”
on page 139

Improve Variation 3: service
enablement of IMS 3270
transactions using the IMS
MFS Web Services
Support feature

“Variation 3: IMS using
MFS Web Support” on
page 141

Adapt Variation 1: service
enablement using Web
Services support in CICS

“Variation 1: Native Web
services access to CICS
transactions” on page 146

Adapt Variation 2: service
enablement using J2C
connector (CICS TG) to
CICS

“Variation 2: J2EE
Connector Architecture
access to CICS” on
page 147
 Chapter 5. SOA implementation scenarios 135

7331ch05.fm Draft Document for Review January 29, 2007 3:05 pm
5.2.1 Using the Improve transition approach

Following the Improve transition approach for 3270 applications generally
involves providing a new front-end interface. Many customers simply choose to
implement a HTML/Web front-end on the 3270 application. However, this does
not provide a SOA-compliant service interface. Since improving the application
addresses the problem at the user interface, an improve solution interacts with
the existing application via the 3270 data stream. All input and output messages
to the 3270 application are done via the 3270 native protocol, and no changes
are made to the underlying application

Adapt Variation 3: service
enablement using
WebSphere MQ / JMS
access to CICS

“Variation 3: WebSphere
MQ access to CICS” on
page 150

Adapt Variation 4: service
enablement using J2C
connector (IMS Connect)
to IMS

“Variation 4: Using IMS
Connect” on page 152

Adapt Variation 5: service
enablement using IMS
SOAP Gateway to access
IMS

“Variation 5: Using the IMS
SOAP Gateway” on
page 154

Adapt Variation 6: service
enablement using
WebSphere MQ / JMS
access to IMS

“Variation 6: Using the
WebSphere MQ to IMS
Bridge” on page 157

Adapt Variation 7: service
enablement and
integration using an ESB

“Using the Adapt approach
with a broker/ESB” on
page 159

Innovate Redeveloped code with a
clear separation of
concerns and high
reusability.

5.2.3, “Using the Innovate
transition approach” on
page 160

Transition approach Variation Described in
136 SOA Architcture Handbook for z/OS

Draft Document for Review January 29, 2007 3:05 pm 7331ch05.fm
The logical architecture for an “Improve” approach is shown in Figure 5-1.

Figure 5-1 Logical architecture for Improve approach

Solution techniques for “Improve”
When using an Improve transition approach against a 3270 starting scenario, all
of the solution techniques follow the adapter-provided service interface pattern
(refer to “Adapter-provided service interface (A)” on page 120). A 3270
presentation adapter is used to translate between the incoming Web Services
messages and the 3270 data stream. The variations dicussed differ from the rest
of the Adapter patterns in their native access to 3270 presentation logic.

The remainder of the adapter-provided service interface pattern variations,
described in section “Adapter-provided service interface (A)” on page 120, are
derived from the Adapt transition approach, and they access the 3270
application’s business logic directly, bypassing the 3270 layer.

We now look at three solution techniques for the Improve approach and the
adapter-provided service interface pattern:

� IBM Host Access Transformation Services (HATS)

� CICS Service Flow Feature (SFF)

� IMS MFS Web Services support

A note about notation: In the diagrams in this chapter, the service interface
is represented by the circle with an “S”. The placement of the service interface
is important to the architecture of the SOA-enabled host solution, and the
solution technique used for the solution dictates the location of that service
interface.

z/OS

IMS, CICS, or other 3270
environment

Service caller
3270 Application

3270 adapter
middleware DBPS
 Chapter 5. SOA implementation scenarios 137

7331ch05.fm Draft Document for Review January 29, 2007 3:05 pm
Variation 1: IBM Host Access Transformation Services (HATS)
A common approach to Improve is the use of the Host Access Transformation
Services (HATS) product. HATS is a WebSphere application that performs two
main functions:

� translate a 3270 application into a Web interface

� translate a 3270 application into a Web Services interface

This is accomplished with a combination of the HATS runtime and tooling running
under Rational Application Developer (RAD). The HATS developer uses the
HATS “perspective” in RAD to navigate through the 3270 application and capture
the various inputs, outputs, and record the interactions needed to communicate
with the 3270 application.

The process generates a series of integration objects - Java beans that can
subsequently be used in either a Web server interface or to generate a SOA/Web
services interface. These Java beans are deployed to the WebSphere
Application Server and run using WebSphere and the HATS runtime. HATS can
be used to service-enable any 3270 (or 5250 or VT-based) transaction, including
CICS, IMS, TSO, and so on.

Solution technique implementation
The HATS variation is an implementation of the “adapter-provided service
interface” pattern. HATS, running in WebSphere, is the “adapter” that transforms
the inbound Web Services protocol into a 3270 data stream that is understood by
the host application. In a HATS solution, the service interface is provided by
WebSphere Application Server, since the services are running inside WAS.

Process overview
SOA-enabling a 3270 application using HATS involves several steps:

1. The developer uses the HATS perspective in RAD to navigate through the
3270 application and records the user interactions, input and output fields,
etc.

2. The developer creates Java beans from the HATS artifacts.

3. The developer uses Web services wizards in RAD to create services from the
HATS Java beans.

4. The developer deploys Java artifacts to WebSphere Application Server.

5. The Java artifacts may be exposed as services.

Figure 5-2 on page 139 shows the HATS (running on z/OS) Web services
solution.
138 SOA Architcture Handbook for z/OS

Draft Document for Review January 29, 2007 3:05 pm 7331ch05.fm
Note: This is only one topology for running HATS. The HATS server is also
supported on distributed platforms, including Linux and Windows.

Figure 5-2 Improve using IBM Host Access Transformation Services (HATS)

For detailed information
� Redpaper: Host Access Transformation Server Concepts and Architecture -

http://www.redbooks.ibm.com/abstracts/redp3706.html

� Redbook: Using IBM WebSphere Host Access Transformation Services V5 -
http://www.redbooks.ibm.com/abstracts/sg246099.html

� Online InfoCenter:
http://publib.boulder.ibm.com/infocenter/hatshelp/v60/index.jsp

Variation 2: CICS Service Flow Feature (CICS Transaction
Server V3.1)

In CICS Transaction Server V3.1, a new feature is available to Improve CICS
applications. The Service Flow Feature, announced in November, 2005
(Announcement Letter 205-303) is a no-charge, separately-orderable feature that
allows the developer to create CICS business services that are composed of a
sequence of CICS application interactions. These applications may be 3270
applications or other CICS applications that do not use the 3270 interface.
Service Flow Feature is comprised of two components:

� Service Flow Modeler (SFM), used to model the flow between CICS services,
create the interactions with the CICS applications (3270 and/or non-3270
COMMAREA-accessible), and expose these services as a Web service.

z/OS

IMS, CICS, or other 3270
environment

Service caller
3270 Application

WebSphere Application
Server

Host Access
Transformation

Services

Windows/Linux

Rational Application
Developer w/HATS

perspective

S
3270
 Chapter 5. SOA implementation scenarios 139

http://www.redbooks.ibm.com/abstracts/redp3706.html
http://www.redbooks.ibm.com/abstracts/sg246099.html
http://publib.boulder.ibm.com/infocenter/hatshelp/v60/index.jsp

7331ch05.fm Draft Document for Review January 29, 2007 3:05 pm
� Service Flow Runtime (SFR), which delivers the adapters and other
supporting code to execute the flows and 3270 interactions created using the
Service Flow Modeler.

The Service Flow Modeler (SFM) is a feature of WebSphere Developer for
zSeries (WDz), an Eclipse-based development tool built on top of the Rational
Application Developer base. CICS Service Flow Feature ships with a number of
limited-use licenses of WDz, specifically for use with Service Flow Feature and
the CICS Web Services feature. If a customer wishes to use WDz for purposes
other than the creation of CICS Web services or SFM flows, they must purchase
a license for the full WDz product.

In a Service Flow Feature solution, the service interface is provided by CICS
itself, as the CICS Transaction Server has its own SOAP listeners, provided by
CICS’s Web Support and/or the WebSphere MQ Trigger Monitor.

Solution technique implementation
While the CICS Service Flow Feature solution is generally considered to fit an
“adapter-provided service interface” pattern, it could also be considered a “native
service interface” pattern, as the adapter function and the Web service interface
are entirely self-contained within the CICS transaction manager.

Process overview
SOA-enabling a 3270 CICS application using the Service Flow Feature solution
involves:

1. The developer uses the CICS Service Flow Modeler in WDz to define the
3270 interactions and flows between 3270 programs (if required).

2. The developer generates artifacts to be deployed to CICS (message
adapters, server adapters, JCL to create RDO definitions and properties files,
etc.).

3. The artifacts are transferred to CICS.

4. Service is ready for use.

Figure 5-3 on page 141 shows the physical architecture for a CICS Service Flow
Feature SOA solution technique.
140 SOA Architcture Handbook for z/OS

Draft Document for Review January 29, 2007 3:05 pm 7331ch05.fm
Figure 5-3 Improve CICS applications using CICS Service Flow Feature

For detailed information
� Redbook: Application Development for CICS Web Services -

http://www.redbooks.ibm.com/abstracts/sg247126.html (Chapter 7)

� Product manual: CICS Service Flow Feature for CICS TS for z/OS V3.1 Run
Time User's Guide (SC34-5899) - downloadable from
http://www-306.ibm.com/software/htp/cics/tserver/v31/library/

� Online InfoCenter:
http://publib.boulder.ibm.com/infocenter/cicsts/v3r1/index.jsp (see
section titled “CICS Service Flow Runtime V3.1)

Variation 3: IMS using MFS Web Support

Message Formatting Services (MFS) is an IMS facility that formats messages to
and from terminal devices and IMS application programs. It is used to separate
the application logic from the device logic. This is illustrated in Figure 3-4 on
page 57.

IMS MFS Web Support is a solution that enables IMS MFS applications to be
published as Web services, EJBs or Java Beans. It consists of two parts:

� IMS MFS Web services support.
Figure 5-4 on page 142 illustrates IMS MFS applications being exposed as a
service using IMS MFS Web services support.

z/OS
CICS Transaction Server V3.1

Service caller

3270 application

Windows

WebSphere Developer
for zSeries with

Service Flow Monitor

3270 application

COMMAREA
application

Service
Flow

Runtime

CICS
Web

Support

MQ
Trigger
Monitor

S

 Chapter 5. SOA implementation scenarios 141

http://www.redbooks.ibm.com/abstracts/sg247126.html
http://www-306.ibm.com/software/htp/cics/tserver/v31/library/
http://publib.boulder.ibm.com/infocenter/cicsts/v3r1/index.jsp

7331ch05.fm Draft Document for Review January 29, 2007 3:05 pm
Figure 5-4 Overview of IMS MFS Web services support

� IMS MFS Web enablement. Figure 5-5 shows IMS MFS applications being
reused as a Web application. In this cases there is no service interface. This
is called the IMS MFS Web Enablement support, which is also part of IMS
MFS Web Support.

Figure 5-5 Overview of IMS MFS Web enablement

Solution technique implementation

Both IMS MFS Web services and IMS MFS Web enablement implement the
“Adapter-provided service interface” pattern since they translate between a
proprietary protocol and an SOA-compliant protocol.

Process overview
For the IMS MFS Web services solution, these are the steps:

1. Developer uses the IMS MFS Web services tooling, which is included in
WebSphere Integration Developer (WID), and imports the require MFS
source files.

2. The service is defined from the MFS source file, and the following artifacts are
generated

z/OS
IMS Transaction Manager V9

Service caller
MFS-based
transactional
application
program

IMS
Connect

XML
Adapter

O
TM

A

IMS DB

WebSphere Application Server

IMS MFS Web
Service

IMS
C4JEJB

S

z/OS
IMS Transaction Manager V9

Browser MFS-based
transactional
application
program

IMS
Connect

XML
Adapter

O
TM

A

IMS DB

WebSphere Application Server

MFS Web
Enablement Adapter

IMS
C4J

MFS Web
Enablement

Servlets
142 SOA Architcture Handbook for z/OS

Draft Document for Review January 29, 2007 3:05 pm 7331ch05.fm
– XMI files

– MID/DIF

– MOD/DOF

– MFS table

– WSDL

3. From WSDL files, the following are generated:

– Input/Output Beans

– Format Handlers

– Service Proxies

4. Service is published and deployed to WAS, which makes it available as a Web
service, EJB or Java bean.

For the IMS MFS Web enablement solution, the process is more or less the
same, except that there is no WSDL or EJBs generated. Instead, there are Java
servlets and stylesheets generated, that will be deployed in WAS.

For detailed information
� Redbook:

http://www.redbooks.ibm.com/
 Chapter 5. SOA implementation scenarios 143

http://www.redbooks.ibm.com/abstracts/sg247126.html

7331ch05.fm Draft Document for Review January 29, 2007 3:05 pm
Observations using the Improve transition approach with the
SOA implementation scenario - 3270 application

5.2.2 Using the Adapt transition approach

An “Adapt” transition approach for transforming a 3270 application to SOA
requires direct access to the business logic of the application and bypasses the
3270 presentation layer. This may be a relatively easy task, depending upon the
structure of the existing application code.

For example, some CICS applications have been partitioned to separate the
presentation interface from the business and/or data logic. Older CICS
applications often have the presentation and BMS code interspersed within the
business logic. In programs where the logic is partitioned, a COMMAREA
construct is often used to pass parameters between the calling and called
programs.

Advantages:

� Quick implementation - simple tooling and deployment, quick
time-to-market

� No impact on existing applications

� Low complexity

� HATS is a generalized 3270 adapter (a “universal 3270 adapter”) that
functions with any 3270 application

� With the CICS Service Flow Feature variation, no additional software
required, besides CICS Transaction Server V3.1

� CICS Service Flow Feature performs the service enablement inside CICS,
reducing points of failure and overhead

Disadvantages:

� The HATS variation requires additional software (HATS, WebSphere
Application Server)

� Additional overhead incurred at 3270 translation layer

� Modifications to 3270 user interface can impact functionality of integration

� Service granularity. IMS 3270 transactions are not designed for
participating in an SOA, and may not have the right granularity for being
invoked as a service.
It may be necessary to perform service modeling techniques in order to
achieve the right level of granularity and reuse.
144 SOA Architcture Handbook for z/OS

Draft Document for Review January 29, 2007 3:05 pm 7331ch05.fm
In CICS, this calling approach is known as Distributed Program Link (DPL).
Most of the variations to those solution techniques which use an Adapt transition
approach require a COMMAREA (or similar construct in IMS) to function.

The logical architecture for the solutions based on an Adapt transition approach
is shown in Figure 5-6.

Figure 5-6 Logical architecture for the Adapt transition approach

Solution techniques for “Adapt”
Solutions derived from the Adapt transition approach all access the business
logic directly, with no “reuse” of the 3270 business logic. There are three service
interface patterns (refer to 4.3.2, “Service interface patterns” on page 119) that
are the end-result of an Adapt transition approach:

� Native service interface
Application code is partitioned and business logic is accessed directly within
the bounds of the transaction manager or database server. The “adapter
middleware” and the service interface are provided natively, inside the
transaction manager or database server and not by an external software
product or component.

� Adapter-provided service interface
Application code is partitioned within the transaction manager or database
server, making business logic directly accessible. The service interface is
placed in the “adapter.” External middleware is used to provide the adapter
functionality.

� Brokered/mediated service interface
Application code is partitioned in the transaction manager or database server,
making business logic directly accessible. The service interface is provided by
a broker or ESB. Applications are often accessed via a messaging protocol
(JMS or WebSphere MQ). The support for those protocols can either be
native to the application or provided by the transaction manager or database
server. Modern brokers, now referred to as the “Enterprise Service Bus”

z/OS

IMS, CICS, or other 3270
environment

Service caller
3270 Application

Adapter
middleware P DB
 Chapter 5. SOA implementation scenarios 145

7331ch05.fm Draft Document for Review January 29, 2007 3:05 pm
(ESB), can integrate with existing transactions using other protocols, such as
SOAP or native interfaces to transaction systems.

Variation 1: Native Web services access to CICS transactions
Beginning in CICS Transaction Server Version 2.3, a native SOAP interface to
CICS transactions became available. In Version 2, this was known as the “SOAP
for CICS” feature and was a separately orderable CICS feature. As of CICS
Transaction Server Version 3.1, the support for SOAP has been enhanced and is
now known as the “CICS Web Services” feature. In the Version 3.1 feature, the
new WS-I standards1 such as WS-Security, WS-Basic Profile, and
WS-Transaction are supported. In addition, the creation of COMMAREA-to-XML
mappings and other related “adapter code” creation tasks have been simplified.

The CICS Web Services feature provides a SOAP interface to existing CICS
transactions. SOAP can flow via either HTTP or JMS/MQ, and there is support
for either inbound (CICS as a service provider) or outbound (CICS as a service
consumer) requests. Inbound/outbound SOAP messages are processed by a
CICS BTS pipeline which removes the payload from the SOAP message and
parses the XML contents to produce a COMMAREA or a CONTAINER to be
passed to (or from) the CICS program that is being called (or that is calling out).

Solution technique implementation
The CICS Web Services feature is an implementation of the “native” service
interface pattern. SOA-compliant connectivity to the CICS application is provided
natively by CICS Transaction Server via the Web Services feature. All
connectivity and processing of the inbound and outbound Web services
protocols is handled by CICS. The service interface is located inside CICS, and
is provided by the CICS Web Services feature.

Process overview
SOA-enabling a 3270 CICS application using the CICS Web Services feature is
known as a “bottom-up” implementation. It involves these steps:

1. Obtain the CICS application language structures (COPYBOOKs) and
modify/simplify if necessary.

2. Using the language structures as input, run the CICS Web Services Assistant
to generate the WSDL, WSBind files, and other artifacts to be deployed to
CICS. Deploy them to the z/OS HFS.

3. Define the necessary resources to CICS, including the transport (HTTP or
MQ) PIPELINE, URIMAP and WEBSERVICE definitions.

4. Test and use the service.

1 Details on the Web Services Interoperability Organization and its standards can be found at
http://www.ws-i.org
146 SOA Architcture Handbook for z/OS

http://www.ws-i.org

Draft Document for Review January 29, 2007 3:05 pm 7331ch05.fm
Figure 5-7 shows the physical architecture for an SOA solution based on CICS
Web Services.

Figure 5-7 Adapt CICS applications using CICS Web Services

For detailed information
� Redbook: Application Development for CICS Web Services -

http://www.redbooks.ibm.com/abstracts/sg247126.html

� Redbook: Implementing CICS Web Services -
http://www.redbooks.ibm.com/abstracts/sg247206.html

� Product manual: CICS Web Services Guide (SC34-6458) - downloadable
from http://www-306.ibm.com/software/htp/cics/tserver/v31/library/

� Online InfoCenter:
http://publib.boulder.ibm.com/infocenter/cicsts/v3r1/index.jsp

Variation 2: J2EE Connector Architecture access to CICS
CICS provides the ability to invoke a transaction from a Java2 Enterprise Edition
(J2EE) application program. The J2EE Connector Architecture (J2C, or J2CA) is
the standard mechanism for calling applications from a J2EE program
synchronously. It is used to invoke applications running in IBM transaction

z/OS
CICS Transaction Server V3.1

Service caller

Windows

WebSphere Developer
for zSeries

Existing CICS
application

CICS Web
Services

PIPELINE

CICS
Web

Support

MQ
Trigger
Monitor

S

WSDL,
 WSBind, etc.

Web Services Assistant
HFS or zFS
 Chapter 5. SOA implementation scenarios 147

http://www.redbooks.ibm.com/abstracts/sg247126.html
http://www.redbooks.ibm.com/abstracts/sg247206.html
http://www-306.ibm.com/software/htp/cics/tserver/v31/library/
http://publib.boulder.ibm.com/infocenter/cicsts/v3r1/index.jsp

7331ch05.fm Draft Document for Review January 29, 2007 3:05 pm
managers including IMS and CICS, and other “Enterprise Information Systems”
such as PeopleSoft®, SAP®, Oracle® ERP, and others.

An overview of the J2EE Connector Architecture is shown in Figure 5-8.

Figure 5-8 J2EE Connector Architecture

CICS transactions can be invoked via the J2C API from within a J2EE program. A
J2EE application running in an application server that supports J2C, such as the
WebSphere Application Server, can use the J2C classes to call a transaction.
The EIS Resource Adapter, as shown in Figure 5-8, is an “intermediary” that
transforms the J2C syntax into a form that the EIS understands. To access CICS
Transaction Server applications, IBM’s implementation of the EIS Resource
Adapter is the CICS Transaction Gateway (CICS TG). CICS TG transforms the
native Java J2C API into calls to the CICS transactions.

As with the other “Adapt” solutions, the CICS program’s business logic must be
seperate from the presentation logic and DPL-accesible through a COMMAREA.
CICS TG takes the input parameters from the J2EE program, formats them into a
CICS-acceptable COMMAREA, invokes the program, and passes the response
back to the J2EE caller.

The Rational Application Developer tool and its “J2EE Connector Tools” feature
provide wizards and Java classes to assist the developer in building J2EE
applications that use J2C to access a CICS program. Chapter 6 of the IBM
Redbook titled WebSphere for z/OS Version 6 Connectivity Handbook,
SG24-7064-02 provides details on the development process.

Application
Server

(e.g. WebSphere
Application Server)

Application
Component

(e.g. Enterprise Java Bean)

EIS Resource
Adapter

(e.g. CICS Transaction
Gateway)

Enterprise
Information System

(e.g. CICS Transaction
Server)

Common
Client

Interface
(CCI)

Container-
Component

Contract

System
Contract

(SPI)

* Transaction
* Connection
* Security
148 SOA Architcture Handbook for z/OS

Draft Document for Review January 29, 2007 3:05 pm 7331ch05.fm
Solution technique implementation
The J2C access to CICS variation is an implementation of the “Adapter-provided
service interface” pattern. The J2EE application running in the Web application
server (WebSphere Application Server or other compatible server), combined
with the CICS Transaction Gateway, provide an “adapter” that is external to CICS.
The service interface is located in the Web application server.

Process overview
The major steps for developing a service that uses J2C access to CICS are:

1. Install and customize the CICS Transaction Gateway.

2. Obtain the CICS application language structures (COPYBOOKs) and
modify/simplify if necessary.

3. Use Rational Application Developer and the appropriate wizards to generate
Java classes that populate the fields in the COMMAREA to be passed to the
CICS transaction and call the transaction.

4. Use RAD’s Web services wizards to define the service interface to the J2C
application and produce the WSDL.

5. Deploy the resulting EAR file and other artifacts to WebSphere Application
Server.

6. Access the service.

Figure 5-9 on page 150 shows the physical architecture for a SOA solution based
on J2C access to CICS.

Note: There are several different topology implementation options for
WebSphere Application Server and CICS Transaction Gateway. For example,
both the WebSphere Application Server and the CICS Transaction Gateway
can run “off platform” on distributed servers. The IBM Redbook titled “CICS
Transaction Gateway for z/OS Version 6.1” (SG24-7161) describes the
topology options and their implementation processes. Figure 5-9 only shows
the “z/OS-centric” topology.
 Chapter 5. SOA implementation scenarios 149

7331ch05.fm Draft Document for Review January 29, 2007 3:05 pm
Figure 5-9 Adapt CICS applications using the J2EE Connector Architecture

For detailed information:
� Redbook: CICS Transaction Gateway for z/OS Version 6.1 -

http://www.redbooks.ibm.com/abstracts/sg247161.html

� Redbook: Revealed! Architecting e-businss Access to CICS -
http://www.redbooks.ibm.com/abstracts/sg245466.html

� Redbook: WebSphere for z/OS V6 Connectivity Handbook -
http://www.redbooks.ibm.com/abstracts/sg247064.html

� Redpaper: WebSphere for z/OS to CICS and IMS Connectivity Performance -
http://www.redbooks.ibm.com/abstracts/redp3959.html

� Online InfoCenter:
http://publib.boulder.ibm.com/infocenter/cicsts/v3r1/index.jsp (see
section titled “CICS Transaction Gateway.”)

Variation 3: WebSphere MQ access to CICS
CICS transactions can be invoked via a message received on a message queue.
This function is provided by a combination of WebSphere MQ and either the
WebSphere MQ CICS Bridge (shipped with WebSphere MQ) or the WebSphere
MQ Trigger Monitor task. In both cases, the “service caller” invokes the program
by using the MQ API to place a message on a queue that is monitored either by
the Bridge or the Trigger monitor.

z/OS

CICS Transaction Server
V3.1

Service caller

Windows or Linux

Rational Application
Developer

COMMAREA-
accessible application

WebSphere
Application Server

J2EE Web
serviceS

CICS
Transaction

Gateway
150 SOA Architcture Handbook for z/OS

http://www.redbooks.ibm.com/abstracts/sg247161.html
http://www.redbooks.ibm.com/abstracts/sg245466.html
http://www.redbooks.ibm.com/abstracts/sg247064.html
http://www.redbooks.ibm.com/abstracts/redp3959.html
http://publib.boulder.ibm.com/infocenter/cicsts/v3r1/index.jsp

Draft Document for Review January 29, 2007 3:05 pm 7331ch05.fm
The MQ message payload is the COMMAREA to be passed to the CICS
program. When the Bridge or the Trigger Monitor receives the inbound message,
they invoke the CICS program and optionally place the response COMMAREA in
a message on a REPLY-TO queue. A REPLY-TO queue is also used for error
conditions that result from the call.

The CICS Link3270 Bridge or the older CICS 3270 Bridge component can also
be used with the WebSphere MQ CICS Bridge to invoke a 3270 program that
does not have a COMMAREA interface.

Neither the WebSphere MQ CICS Bridge nor the WebSphere MQ Trigger
Monitor provide a WSDL-described Web services interface. SOAP is not used as
the message format - it is “native” MQ. This is a different scenario than using MQ
or JMS as a SOAP transport. If a Web services compliant solution is needed, an
Enterprise Service Bus (ESB) can be used to place a SOAP-compliant layer
between the service caller and the Bridge or Trigger Monitor. This will mean a
Brokered/Mediated service interface pattern.

Solution technique implementation
The WebSphere MQ access to CICS variation is an implementation of the
“adapter-provided service interface” pattern. The WebSphere MQ middleware
and the Bridge and Trigger Monitor features act as the “adapter” between the
service requester and the CICS application. While these applications are not
represented as Web services, they still are services which are enabled for use
within a composite application.

Process overview
There are several key steps to implement a WebSphere MQ interface to a CICS
application:

1. Install and configure either the WebSphere MQ CICS Bridge or the
WebSphere MQ Trigger Monitor.

2. Code the service requester program to create a COMMAREA-compatible
data area to pass to the service.

3. Add MQ API calls to place a message containing the COMMAREA and
appropriate MQ headers onto a queue that is monitored by the WebSphere
MQ-CICS Bridge or the Trigger Monitor.

Figure 5-10 on page 152 shows the physical architecture for WebSphere MQ
access to CICS transactions via the WebSphere MQ-CICS Bridge.
 Chapter 5. SOA implementation scenarios 151

7331ch05.fm Draft Document for Review January 29, 2007 3:05 pm
Figure 5-10 Adapt CICS applications using the WebSphere MQ-CICS Bridge

For detailed information
� Redbook: Revealed! Architecting e-businss Access to CICS -

http://www.redbooks.ibm.com/abstracts/sg245466.html

� Redpaper: WebSphere for z/OS to CICS and IMS Connectivity Performance -
http://www.redbooks.ibm.com/abstracts/redp3959.html

� Whitepaper: Using a message-based approach to integrate your CICS
system with your entire IT infrastructure (G325-2113) -
http://www.elink.ibmlink.ibm.com/public/applications/publications/cg
ibin/pbi.cgi?CTY=US&FNC=SRX&PBL=G325-2113-00

Variation 4: Using IMS Connect
The “Adapt” scenarios for IMS illustrate how backend functions can be exposed
as services. This is done by creating a new layer with service interfaces based on
EJB components, which in their turn, call the backend IMS transaction. These
EJB components will enrich the functionality, and be able to provide logic, which
will increase the value and ease of reuse in a modern SOA.

IMS Connect enables TCP/IP connectivity to IMS. A client can be any kind of
client, as long as it has TCP/IP connectivity. For this example, the caller is an
EJB.

Figure 5-11 Overview of the IMS Connect scenario

z/OS
CICS Transaction Server

Service caller

COMMAREA-
accessible application

WebSphere MQ

Request
queue

Reply-to
queue

Bridge
monitor

Bridge DPL
transaction

MQ API
Bridge transaction

3270 application

START

LINK

START

z/OS

IMS

Service caller

Application Server

Transaction

Database Server

Database

Component

W
S
D
L

IMS
Connector
for Java

O
T
M
A

IMS
Connect
152 SOA Architcture Handbook for z/OS

http://www.redbooks.ibm.com/abstracts/sg245466.html
http://www.redbooks.ibm.com/abstracts/redp3959.html
http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi?CTY=US&FNC=SRX&PBL=G325-2113-00

Draft Document for Review January 29, 2007 3:05 pm 7331ch05.fm
In this scenario, the client to IMS is a J2EE application server, already running on
z/OS. Logic is implemented in EJBs. Based on these EJBs there are service
definitions published using WSDL and accessible from different channels, e.g.
through SOAP. The EJBs use the J2EE Connector Architecture (J2C) to call IMS
Connect. JCA is discussed in “Variation 2: J2EE Connector Architecture access
to CICS” on page 147.

Example of the flow of a message using IMS Connect
We now discuss the flow of a request, as shown in Figure 5-12.

Figure 5-12 Walkthrough of the IMS Connect example

1. The application server receives the SOAP message from the client
application. It processes the SOAP header and calls the EJB that matches
the input request.

2. The EJB uses the J2EE Connector Architecture (J2C) to obtain a connection
to IMS Connect, and builds the required structure(s) for the call. Then it
executes the call.

3. IMS Connect receives data from the application server (TCP/IP) client,
performs basic editing and translation, invokes security, and prepares the
message in the OTMA format.

4. OTMA gets the message, and passes it on to the receiving transaction.

5. Response from the transaction is passed to OTMA, and IMS Connect.

6. IMS connect formats the response in a way that the application understands,
and the control is returned to the EJB.

7. The EJB processes the reply and returns a reply to the service caller.

Solution technique implementation
The IMS Connect scenario is an implementation of the aAdapter-provided
service interface” pattern. The J2EE application running in the Web application
server (WebSphere Application Server or other compatible server), combined
with the IMS Connector for Java, provide an “adapter” that is external to IMS. The
service interface is located in the Web application server.

z/OS

IMS

Service caller

Application Server

Transaction

Database Server

Database

Component

W
S
D
L

IMS
Connector
for Java

O
T
M
A

IMS
Connect

1
2 3

4

57 3
 Chapter 5. SOA implementation scenarios 153

7331ch05.fm Draft Document for Review January 29, 2007 3:05 pm
Process overview
1. Install and configure IMS Connect. OTMA (Open Transaction Manager

Access) is already part of IMS.

2. Install and configure WebSphere Application Server. Configure connection
management to IMS.

3. You can choose to code the logic yourself in order to use IMS Conector for
Java. Or you can use a tool, such as WebSphere Integration Developer or
Rational Application Developer to generate the necessary structures and
beans.

4. Deploy the application to the application server.

For detailed information
� Redbook: IMS Connectivity in an On Demand Environment: A Practical Guide

to IMS Connectivity -
http://www.redbooks.ibm.com/abstracts/sg246794.html

� Product documentation: IMS Connect
http://www-306.ibm.com/software/data/db2imstools/html/imsconnectv12.
html

� WebSphere Integration Developer
http://publib.boulder.ibm.com/infocenter/dmndhelp/v6rxmx/index.jsp

Variation 5: Using the IMS SOAP Gateway
One way to open up existing IMS transactions, and to make them easily
accessible from different service callers, is to expose them as Web services.

IMS SOAP Gateway is a Web services solution that enables IMS applications to
interoperate outside of the IMS environment through Simple Object Access
Protocol (SOAP). By doing this, the IMS transaction can easily be reused from
different channels through the IMS SOAP Gateway.

Figure 5-13 Overview of the IMS SOAP Gateway

z/OS

IMS

Service caller Transaction

Database Server

Database

W
S
D
L

IMS SOAP Gateway
O
T
M
A

IMS
Connect

XML
Adapter
154 SOA Architcture Handbook for z/OS

http://www.redbooks.ibm.com/abstracts/sg247126.html
http://www.redbooks.ibm.com/abstracts/sg247126.html

Draft Document for Review January 29, 2007 3:05 pm 7331ch05.fm
Solution technique implementation
IMS SOAP Gateway fits the “Adapter-provided service interface” pattern, since it
translates between a proprietary protocol and an SOA compliant protocol.

IMS SOAP Gateway consists of two main components:

� IMS SOAP Gateway server, which is the node that provides the SOAP service
and the WSDL interface.

� IMS SOAP Gateway deployment utility, which is a utility that enables you to
set up properties and create runtime code for the IMS SOAP Gateway.

Process overview
1. Create a Web Service Description Language (WSDL) file for the IMS

application.

2. Deploy the Web service interface to IMS SOAP Gateway and define the
connection and correlation information by using the deployment utility.

3. After you deploy the WSDL file, the IMS application is available as a Web
service.

4. You can create your desired client application to send SOAP messages to
your IMS application through IMS SOAP Gateway.

Tools used to create the WSDL for the IMS SOAP Gateway
IBM WebSphere Developer for zSeries is an application development tool that
helps with the development of traditional mainframe applications. It helps you to
easily generate the artifacts needed to transform your IMS application into a Web
service to be used with the IMS SOAP Gateway runtime.

By simply taking a COBOL copybook for your IMS application that describes the
input and output message format, it generates the following Web service
artifacts:

� Web Services Description Language (WSDL) file, which provides a Web
service interface of the IMS application so that the client can communicate
with the Web service.

� COBOL converters and driver file, which help you to transform the XML
message from the client into COBOL bytes for the IMS application and then
back to XML.

� Correlator file, which contains information that enables IMS SOAP Gateway to
set IMS properties and call the IMS application.

Example of the flow of a message using IMS SOAP Gateway
We now discuss the flow of a request, as shown in Figure 5-14 on page 156.
 Chapter 5. SOA implementation scenarios 155

7331ch05.fm Draft Document for Review January 29, 2007 3:05 pm
Figure 5-14 Walkthrough of the IMS SOAP Gateway example

1. The IMS SOAP Gateway server receives the SOAP message from the client
application. It processes the SOAP header (XML) and retrieves the
appropriate correlation and connection information for the input request.

2. The IMS SOAP Gateway sends the input XML data to IMS Connect using
TCP/IP after adding the appropriate IMS Connect header.

3. IMS Connect calls the XML Adapter which in turn calls the XML Converter to
perform the XML to IMS application format transformation.

4. It then calls the transaction using OTMA. From this point on, the processing is
the same as a normal transaction flow.

5. The transaction gets executed and the output is queued.

6. The output message from IMS is then transferred back to IMS Connect, which
calls the XML Adapter in order to perform the transformation of the IMS
application format to XML. IMS Connect sends the output XML message back
to IMS SOAP Gateway using TCP/IP.

7. IMS SOAP Gateway server wraps a SOAP header on the output message
and sends it back to the client.

A few words about XML transformation
In the scenario, we have assumed that all XML transformation is done by the
XML Adapter in IMS.

If you instead choose to handle the XML transformation in your application
without utilizing the IMS Connect XML Adapter, you obviously do not need to
invoke the XML Adapter.

In this case, the incoming XML message is sent directly to IMS Connect and then
to the IMS application and the same is true in reverse. The IMS application
creates an XML output message which is sent to IMS Connect, IMS SOAP
Gateway and finally to the Web service client.

z/OS

IMS

Service caller Transaction

Database Server

Database

W
S
D
L

IMS SOAP Gateway
O
T
M
A

IMS
Connect

XML
Adapter

1 2

3

4
5

6

7

156 SOA Architcture Handbook for z/OS

Draft Document for Review January 29, 2007 3:05 pm 7331ch05.fm
For detailed information
� Redbook: IMS Connectivity in an On Demand Environment: A Practical Guide

to IMS Connectivity -
http://www.redbooks.ibm.com/abstracts/sg246794.html

� Product documentation: IMS SOAP Gateway
http://www-306.ibm.com/software/data/ims/soap/index.html

� “WebSphere Developer for zSeries” on page 116

Variation 6: Using the WebSphere MQ to IMS Bridge
The WebSphere MQ IMS Bridge provides MQ connectivity to IMS backend
transactions. A client can therefore be any kind of client that can put messages
on an MQ queue.

In this scenario, the client is a J2EE application server, already running on z/OS.
Logic is implemented in EJBs. Based on these EJBs there are service definitions
published using WSDL and accessible from different channels, e.g. through
SOAP. The EJBs use the JMS Provider for WebSphere MQ to access queues in
a WebSphere MQ queue manager. Messages are forwarded by WebSphere MQ
to the bridge, based on the queue settings in the WebSphere MQ queue
manager.

Figure 5-15 Overview of the WebSphere MQ IMS Bridge

Example of the flow of a message
1. The application server receives the SOAP message from the client

application. It processes the SOAP header and calls the EJB that matches
the input request.

2. The EJB uses JMS calls to obtain a connection to WebSphere MQ, and builds
the required structure(s) for the call. Then it executes the call.

3. WebSphere MQ receives the message from the application server, and
forwards it to the receiving queue manager. The WebSphere MQ IMS Bridge
retrieves the message, and prepares the message in the OTMA format.

z/OS

IMSApplication Server

Transaction

Database Server

Database

Component

W
S
D
L

JMS to
MQ

O
T
M
A

MQ
IMS

Bridge
Service caller M

Q
M
Q

Service caller MQ client MQ channel

Main example

Variation
 Chapter 5. SOA implementation scenarios 157

http://www.redbooks.ibm.com/abstracts/sg247126.html
http://www-306.ibm.com/software/htp/cics/tserver/v31/library/

7331ch05.fm Draft Document for Review January 29, 2007 3:05 pm
4. OTMA gets the message, and passes it on to the receiving transaction.

5. Response from the transaction is passed to OTMA, and MQ IMS Bridge.

6. A message is returned to the reply queue, and is fetched again by the EJB.

7. The EJB processes the reply and returns a reply to the service caller.

Solution technique implementation
The WebSphere MQ IMS Bridge example is an implementation of the
“Adapter-provided service interface” pattern. The J2EE application running in the
Web application server (WebSphere Application Server or other compatible
server), combined with WebSphere MQ, provide an “adapter” that is external to
IMS. The service interface is located in the Web application server.

Process overview
1. Configure WebSphere MQ, including a queue manager and queues

2. Install and configure the WebSphere MQ IMS Bridge

3. Define the WebSphere MQ queue and its queues to the application server.

4. OTMA (Open Transaction Manager Access) is already part of the IMS
installation.

5. Develop the (Web service) application running in the application server using
the JMS APIs. Eventually, develop MDBs for the reply messages.

6. Deploy the application to the application server.

For detailed information
� Redbook: IMS Connectivity in an On Demand Environment: A Practical Guide

to IMS Connectivity -
http://www.redbooks.ibm.com/abstracts/sg246794.html

� Product documentation: WMQ IMS Bridge
http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp?topic=
/com.ibm.mq.csqsat.doc/csq826y.htm

� WebSphere Integration Developer
http://publib.boulder.ibm.com/infocenter/dmndhelp/v6rxmx/index.jsp

Attention: Asynchronous retrieval of the reply message in the Web
application server requires the usage of “Message-Driven Beans” and the
configuration of so-called Listener Ports (JMS 1.0) or Activation Specifications
(JMS 1.1) in the application server.
158 SOA Architcture Handbook for z/OS

http://www.redbooks.ibm.com/abstracts/sg247126.html
http://www.redbooks.ibm.com/abstracts/sg247126.html
http://www.redbooks.ibm.com/abstracts/sg247126.html

Draft Document for Review January 29, 2007 3:05 pm 7331ch05.fm
Using the Adapt approach with a broker/ESB
All of the technology variations in 5.2, “SOA implementation scenarios for 3270
application” on page 135 address the problem of enabling an existing 3270
transaction as a service and accessing it directly.

As an organization moves forward in the maturity of their SOA implementation, it
will probably employ a message broker or Enterprise Service Bus as a mediation
layer between the service requesters and service providers. 2.4.3, “The
Enterprise Service Bus (ESB)” on page 19 discusses the basic functions of the
ESB.

One of the major functions of an ESB is to translate protocols between the
requester and provider. Most of the service enablement technologies used with
the Improve and Adapt transition approaches can be used in conjunction with an
ESB. The ESB becomes the service interface for all of the services under its
control. This scenario implements the brokered/mediated service interface
pattern. The ESB provides the service interface and leverages the appropriate
service enablement technology to invoke the called service.

Figure 5-16 on page 160 illustrates the relationship between the ESB and the
service enablement options. The service requester calls a service, the broker
intercepts that call, routes the message to the proper endpoint service provider,
and in the process converts the transport protocol to the one supported by the
service provider. Optionally, the ESB will transform the message content into a
format acceptable to the service provider and/or service requester.
 Chapter 5. SOA implementation scenarios 159

7331ch05.fm Draft Document for Review January 29, 2007 3:05 pm
Figure 5-16 Overview of a brokered/mediated service interface architecture

For more information on ESB and service integration, refer to Chapter 6,
“Towards service integration and process integration” on page 219;

5.2.3 Using the Innovate transition approach

Sometimes, an organization working on service enablement of a 3270
transaction may find that the code is so messy and unworkable that it requires a
complete rewrite. This can be a very costly and involved process, and it negates
some of the cost savings that are provided by reuse of assets. If appropriate tools
are used to harvest and reuse business rules and existing business logic,
savings can still be realized, and the resulting code is better structured for reuse
and may provide better performance or reliability as a by-product of the effort.

The Innovate transition approach can allow the organization to do a better job of
structuring the services with the appropriate level of granularity. In 4.1,
“Methodologies for analyzing the business and application environment” on
page 96, the concepts of top-down versus bottom-up SOA implementation and
modeling approaches such as SOMA was covered. The use of these techniques
becomes more applicable in a situation where code is being re-written, since the
service granularity and appropriate levels of modularity can be implemented

Enterprise Service Bus
(WebSphere Message Broker)

Service requester

CICS IMS TM DB2

WebSphere
MQ

WebSphere
Application Server

SOAP
(HTTP or JMS)

SOAP
(HTTP or JMS)

CICS EXCI
(z/OS Broker only)

SOAP
(HTTP or JMS)

JDBC

J2EE Connector
Architecture

J2EE Connector
Architecture

JDBC

MQ

MQ
Bridge

MQ
Bridge

Many protocols (SOAP, JMS,
MQ, FTP, email, etc.)

S

160 SOA Architcture Handbook for z/OS

Draft Document for Review January 29, 2007 3:05 pm 7331ch05.fm
more easily in re-written code than when using programs that do not necessarily
match the requirements identified in the top-down analysis using the modeling
tools.

A key question in the innovation effort is: “is the 3270 interface still needed?”
Many organizations are restructuring their applications to be accessed by Web
interfaces, but there is still a requirement for 3270 access. This may be a matter
of “dual use” by users who are accustomed to the 3270 interface and do not wish
to change, and by new users and/or those who prefer a browser interface. Not all
applications lend themselves to a browser UI. In some cases, “hands on
keyboard” is a more efficient way to enter data than point-and-click.

Other decisions must be made when undertaking an Innovate project. For
example:

� What programming language should be used? This decision is driven by a
number of factors, but in an Innovate effort, one of the key factors is the
amount of existing business logic that can be extracted from the existing
programs.

� What transaction manager should be used? For example, a program may be
redeveloped using Java, but that does not mean the application cannot
continue to run on IMS or CICS, which both support transactions coded in
Java.

� Does the re-engineered application conform to the proper level of granularity
and provide the approrpriate service interface?

The other architecture decision questions must be considered also, including
Quality-Of-Service requirements, skills, funding, etc. Architects should make
sure they employ a methodology for architectural decisions when reviewing these
items.

The logical architecture for an Innovate-based transition approach to service
enabling a 3270 transaction is shown in Figure 5-17 on page 162.
 Chapter 5. SOA implementation scenarios 161

7331ch05.fm Draft Document for Review January 29, 2007 3:05 pm
Figure 5-17 Logical architecture for the Innovate transition approach

Solution techniques and “Innovate”
When using an Innovate approach to service enablement, the solution technique
used is the Redeveloped service interface pattern. However, using this technique
also results in an application that takes on the appearance of an application that
is service-enabled using the Native service interface pattern, since the service
interface is ideally, though not necessarily, natively provided by the transaction
manager or database server for the re-developed programs.

5.3 SOA implementation scenarios for multichannel

As described in 3.2, “Starting scenario - multichannel” on page 62, the
multichannel architecture may already consist of reusable components, and to
some degree also reusable services.

There are many variations of multichannel applications possible and we discuss
a few very common ones in this chapter. This is not an exclusive list. Common to
all variations is that there is a middle-tier implemented between the channel and
the back-end, using components based on Java or J2EE. The scenarios
discussed in this chapter are listed in Table 5-2 on page 163.

In the variations in this chapter, we will only deal with changes in the J2EE
application server layer, and not with changes in the core backend functions. For
changes in the core backend, please have a look at 5.2, “SOA implementation
scenarios for 3270 application” on page 135. The multichannel and 3270
application scenarios can be combined in order to provide a more complete
picture of the transition process.

z/OS

Transaction manager

Service caller
Re-engineered

application

P DB

S

162 SOA Architcture Handbook for z/OS

Draft Document for Review January 29, 2007 3:05 pm 7331ch05.fm
Table 5-2 Summary of multichannel variations

5.3.1 Using the Improve transition approach

Just to refresh what we mean with the “Improve transition approach”. We have
defined it as an approach, which exposes application functions as a service. It
usually involves a piece of new technology which adds a standardized interface
to be used by a calling application.

Transition approach Variation Described in:

Improve Variation 1: service enable
an existing Java servlet /
JSP-based Web
application.

“Variation 1:
Service-enabled Web
application” on page 164

Improve Variation 2: service enable
an existing J2EE
application

“Variation 2:
Service-enabled J2EE
application” on page 166

Improve Variation 3: service enable
an existing JMS-based
application

“Variation 3:
Service-enabled J2EE
application using JMS /
Message Driven Beans” on
page 167

Adapt Variation 1: service
integration using
WebSphere ESB

“Variation 1: Using the
Adapt approach using
WebSphere ESB as
broker” on page 171

Adapt Variation 2: service
integration using
WebSphere Message
Broker

“Variation 2: Using the
Adapt approach using
WebSphere Message
Broker as broker” on
page 173

Innovate Variation 1: service
enablement and
integration of a
client/server application

“Variation 1: SOA
enablement of a fat client
(client/server) application”
on page 177

Innovate Variation 2: Using
WebSphere Portal to
provide interaction
services

“Variation 2: Using Portal”
on page 180
 Chapter 5. SOA implementation scenarios 163

7331ch05.fm Draft Document for Review January 29, 2007 3:05 pm
Figure 5-18 Logical overview of the Multichannel Improve transition approach

Solution techniques for “Improve”
The use of the Improve transition approach usually leads to the adoption of the
“adapter-provided service interface” pattern. In the multichannel scenario, we
might also see some pieces of the “native service interface pattern”, since there
might be slight modifications to the components in the application server layer.

The core functions in the backend transaction server remain untouched.

Variation 1: Service-enabled Web application
Many existing Web applications are based on Java Server Pages (JSP) or servlet
technology. In the early days when there was no EJB support, the application
logic was built using standard Java Beans. Those applications have had the
primary objective of adding a better user interface to an existing (legacy)
application. We also called this approach “Web enablement”. There was not
much focus on separation of concerns and reusability.

For this scenario, we assume that the backend functions in CICS and IMS will
remain the same, and called via the same interface as before. The changes are
in the Java layer and have the objective to make encapsulated business functions
(which are usually implemented in the Web applications by means of Java
Beans) accessible as Web services.

z/OS

CICS/IMS Transaction
Server

Application Server

Database Server

Database

B D

D

Service
consumer B DS

PBrowser
164 SOA Architcture Handbook for z/OS

Draft Document for Review January 29, 2007 3:05 pm 7331ch05.fm
Figure 5-19 Target architecture of the “service-enabled Web application” variation

When transformed, this architecture may be viewed as the starting point for
“Variation 2: Service-enabled J2EE application” on page 166.

Solution technique implementation
The solution technique in this scenario could best be described as a “native
service interface” pattern technique, because the service interface will be
implemented in the same runtime component as where the service itself is
implemented.

Process overview
Web service-enabling a Web application involves the following steps:

1. The developer uses the Rational Application Developer or equivalent tool to
create a service interface from the servlet or Java Bean, using the provided
wizards.

2. Eventually, a Java service proxy can be created to be included in a Java
service consumer.

3. The WSDL created in the first step can be used by the developer of any
service consumer and the Java service proxy created in the second step can
be used by a Java service consumer.

For detailed information
� Redbook: Rational Application Developer V6 Programming Guide -

http://www.redbooks.ibm.com/abstracts/sg246449.html

z/OS

CICS/IMS Transaction
Server

Application Server

Database Server

Database

B D

D

Browser B DP
JSP/

Servlet
Java

Beans
S

WSDL

Service
consumer SOAP

HTTP/HTTPS
 Chapter 5. SOA implementation scenarios 165

http://www.redbooks.ibm.com/abstracts/sg247126.html
http://www.redbooks.ibm.com/abstracts/sg247126.html

7331ch05.fm Draft Document for Review January 29, 2007 3:05 pm
Variation 2: Service-enabled J2EE application
The starting point for this variation is that the application architecture is based on
J2EE, including EJBs. Compared to the Java servlet enablement variation, EJB
technology brings added functionality for transactions and security.

This variation illustrates how the EJB components can be enabled for reuse, and
called by other channels. In this case, via the SOAP protocol.

For this scenario, we assume that the backend functions in CICS and IMS will
remain the same, and called via the same interface as before. The changes we
apply are in the J2EE layer, implemented in the application server.

This scenario, like the “Variation 1: Service-enabled Web application” on
page 164, shows that it is the J2EE application server that provides the
technology enhancements to add support for new protocols and channels.

Figure 5-20 Overview of the service-enabled J2EE application

Figure 5-20 shows the enablement of a WSDL interface to the existing EJBs.
Once your component architecture is based on EJBs, it is not a major task to add
support for additional standards, such as SOAP.

WSDL is generated by the Rational Application Developer tool, and the EJBs and
WSDL is deployed to the WebSphere Application Server.

Solution technique implementation
The service-enabled J2EE application variation is an implementation of the
“native service interface” pattern. The J2EE application is Web services-enabled
using functionality in the J2EE application server (WebSphere Application Server

z/OS

CICS/IMS Transaction
Server

Application Server

Database Server

Database

B D

D

Browser

B

D

S

PHTTP/HTTPS

Service
consumer SOAP

JSP/Servlet

EJBs

WSDL
166 SOA Architcture Handbook for z/OS

Draft Document for Review January 29, 2007 3:05 pm 7331ch05.fm
or equivalent). The service interface is located inside the J2EE application
server.

Process Overview
Service-enabling an EJB-based application involves the following steps:

1. The developer uses the Web Service wizards in Rational Application
Developer to create WSDL from the stateless session EJB.

2. Eventually, a Java service proxy can be created to be included in a Java
service consumer.

3. The WSDL created in the first step can be used by the developer of any
service consumer and the Java service proxy created in the second step can
be used by a Java service consumer.

For detailed information
� Redbook: Rational Application Developer V6 Programming Guide -

http://www.redbooks.ibm.com/abstracts/sg246449.html

Variation 3: Service-enabled J2EE application using JMS /
Message Driven Beans

The starting point is an application architecture that is based on EJBs and JMS
as asynchronous communication protocol, opposed to the variation discussed in
“Variation 2: Service-enabled J2EE application” on page 166 where HTTP or
RMI-IIOP were the primary protocols used.

This variation illustrates how the EJB components can be reused better from
other channels by service-enabling the MDB/EJB-based functions.

For this scenario, we assume as in the previous variations that the backend
functions in CICS and IMS will remain the same, and called via the same
interface as before. The changes we apply are in the J2EE layer, implemented in
the application server.

This scenario shows that the runtime functionality for Message Driven Beans
(MDB) will be provided by the J2EE Application Server.
 Chapter 5. SOA implementation scenarios 167

http://www.redbooks.ibm.com/abstracts/sg247126.html

7331ch05.fm Draft Document for Review January 29, 2007 3:05 pm
Figure 5-21 Overview of service-enabled J2EE application using JMS / Message Driven
Beans

Solution technique implementation
The service-enabled J2EE application using JMS / Message Driven Beans
variation is an implementation of the “native service interface” pattern. The J2EE
application is Web services enabled using functionality in the J2EE application
server (WebSphere Application Server or equivalent) combined with the usage of
Message Driven Beans. The service interface is located inside the J2EE
application server.

The wizards in Rational Application Developer can be can be used to create an
EJB with a bean type of Message Driven Bean. The wizard creates appropriate
methods for the type of bean.

Process Overview
1. The WebSphere MQ administrator creates any additional necessary queues

and connections to be used by the new solution, if not already there.

2. The developer uses the Enterprise Bean wizard in Rational Application
Developer to create the enterprise bean with the type of Message-Driven
Bean. All necessary methods are automatically created.

3. One reason for creating a new Message-Driven Bean, is to separate the
business logic from the interface. The Message-Driven Bean can easily call

z/OS

CICS/IMS Transaction
Server

Application Server

Database Server

Database

B D

D

Browser

B

D

S

PHTTP/HTTPS

Service
consumer SOAP

JSP/Servlet

EJBs

WSDL

M

Service
consumer

Message
Driven
Bean

WMQ

S

WMQ
queue

WSDL

SOAP/JMS
168 SOA Architcture Handbook for z/OS

Draft Document for Review January 29, 2007 3:05 pm 7331ch05.fm
the target EJB, so the MDB can be thin, and implement most logic in the
onMessage() method.

4. The EJBs are configured for deployment, packaged into EAR files, and
deployed in the WebSphere Application server.

5. Client code is created using the technology of choice. The client needs to be
configured to use the appropriate queue name, which triggers the MDB.

For detailed information
� Techical documentation: Using message-driven beans in applications -

http://publib.boulder.ibm.com/infocenter/wasinfo/v5r1//topic/com.ibm
.websphere.zseries.doc/info/zseries/ae/tmb_ep.html

5.3.2 Using the Adapt transition approach

The ”Adapt” transition approach is more intrusive than “Improve”. It means that
there will be more changes in the original code and functions, than in the
previous examples.

There is a need for a more clear separation of presentation, business and data
access logic.

There may also be a need to change the core functions in the back-end
applications.

Figure 5-22 Overview of the Multichannel “Adapt” transition scenario

z/OS

Backend transaction server

Service caller

Application Server

Database Server

Database

B D
P B D

P B D

D

 Chapter 5. SOA implementation scenarios 169

http://www.redbooks.ibm.com/abstracts/sg247126.html
http://www.redbooks.ibm.com/abstracts/sg247126.html

7331ch05.fm Draft Document for Review January 29, 2007 3:05 pm
Solution techniques for “Adapt”
The “Adapt” variations for the multichannel SOA implementation scenarios will
involve the “adapter-provided service interface” and “brokered/mediated service
interface” patterns.

Using the Adapt approach with a broker/ESB
The starting point for this variation is that the application architecture is service
enabled, but services are not being called over an ESB yet. Hence, any routing,
mediation or event services logic (if this exists) is still manually implemented in
the application. There may be different types of service bindings used, and the
service consumers need to be able to support the bindings of the service
provider.

For this scenario, we assume that the backend functions in CICS and IMS will
remain the same, and called via the same interface as before, i.e. through one of
the protocols supported by the application server. Usually, this is either a J2C
connector or JMS. Typically, the service interface is in the application server.

This variation introduces a common bus between the service requesters and
service providers. Instead of calling a service in the application server directly
over HTTP or JMS, the call will now go logically through the ESB. This variation
is illustrated in Figure 5-23.

Figure 5-23 Overview of the “Adapt” transition approach with a broker/ESB

WMQ

S WMQ
queue

WSDL

Application Server

B

D

S
EJBs

WSDL

B
Message

Driven
Bean

S B DS B D

Service
consumer

ESB

S B D

Application Server

P JSP/Servlet
170 SOA Architcture Handbook for z/OS

Draft Document for Review January 29, 2007 3:05 pm 7331ch05.fm
For more information about the ESB architecture see “What are the capabilities
of an ESB?” on page 228.

Variation 1: Using the Adapt approach using WebSphere ESB
as broker

In this variation we instantiate the generic ESB described previously with the
product WebSphere ESB. From the description of the starting point we know that
the applications are enabled as services, but the routing, mediation and event
services logic is still manually implemented in the application. We also know that
there may be different types of service bindings used, and the service consumers
need to be able to support the bindings of the service provider.

An example, with an application containing mediation is shown in Figure 5-24.

Figure 5-24 Example of the Adapt approach using WebSphere ESB

The first activity is to identify the application parts that implement routing,
mediation and event processing and position these inside the WebSphere ESB.
So there is some amount of analysis, decomposition and restructuring work
necessary.

The second activity concerns the service bindings used: we will leave the service
binding untouched, but eliminate the necessity for the service consumer to know
that a particular service can be called only with a specific service binding. We are

S B D

Service
consumer

S B D

Application Server

P JSP/Servlet

service interface
SOAP over HTTP

service interface
SOAP over JMS

service interface
SOAP over HTTP

service consumer

we have to insert here a
new midleware

component
-to allow protocol

independence
- to eliminate routing and

mediation from the
application

WMQ

S WMQ
queue

WSDL

Application Server

B

D

S
EJBs

WSDL

B
Message

Driven
Bean
 Chapter 5. SOA implementation scenarios 171

7331ch05.fm Draft Document for Review January 29, 2007 3:05 pm
also creating, in the process of restructuring, new services (named S1). Let us
take the following example: the service, implemented in the application server,
can be called using SOAP over JMS. Since we don’t want to put restrictions on
the service consumer, we are using the flexibility provided by WebSphere ESB to
mediate between the call of the service consumer and the service, translating (in
ESB language called “mediating”) as necessary.

Figure 5-25 Implementation of routing and mediation for the Adapt approach with
WebSphere ESB

Solution technique implementation
The solution technique in this scenario could best be described as a
“brokered/mediated service interface” pattern, because the service interface
accessed by the consumer will be implemented in the ESB.

The best scenario to implement WebSphere ESB is when the applications
support the interaction pattern called Web Services. In the simplest case all
services are co-located inside the WebSphere Application Server. The
collocation produces improvements in performance (reducing path length,
eliminate some network traffic).

Process Overview
1. The developer restructures the application by decomposing the

routing/mediation parts, and creating eventually more service
implementations.

2. The developer uses the wizards in WebSphere Integration Developer2 to
create the SCA components (with their imports and exports) that represent to
the outer world the services. The initial WSDL is known from the application

2 WebSphere Integration Developer (WID) is IBM's tool to develop SCA components and mediation
for WebSphere ESB.

M

Service
consumer

Application Server

P JSP/Servlet

service interface
SOAP over JMS

service consumer

SOAP over HTTP

WEBSPHERE ESB

S

S

routing to S1 or S2
translate from SOAP over
HTTP to SOAP over JMS

WMQ

S2 WMQ
queue

Application Server

B

D

S1
EJBs

B
Message

Driven
Bean
172 SOA Architcture Handbook for z/OS

Draft Document for Review January 29, 2007 3:05 pm 7331ch05.fm
(we said that the prerequisite was that all applications are service enabled);
the WSDL can be imported and used in the SCA. The SCA components will
have the bindings used by the clients. Note here that the ESB (the central
middleware) adapts to the bindings supported by the clients, and not vice
versa.

3. The developer uses the wizards in WebSphere Integration Developer to
create the mediations and routing components.

4. The WebSphere ESB administrator deploys the mediation and routing
components in the WebSphere Application Server runtime (where the ESB
itself runs).

For detailed information

Variation 2: Using the Adapt approach using WebSphere
Message Broker as broker

In this variation we instantiate the generic ESB described previously with the
product WebSphere Message Broker (WMB). From the description of the starting
point we know that the applications are enabled as services, but the routing,
mediation and event services logic is still manually implemented in the
application. We also know that there may be different types of service bindings
used, and the service consumers need to be able to support the bindings of the
service provider.

When we speak here about the applications enabled as services we do not mean
Web services; there is a mixture of applications, some have standard (Web
Services) service interfaces, some have non-standard service interfaces,
accessed over different protocols and different interaction patterns. The situation
is shown in Figure 5-26 on page 174.

Author Comment: References to do (ALK)
 Chapter 5. SOA implementation scenarios 173

7331ch05.fm Draft Document for Review January 29, 2007 3:05 pm
Figure 5-26 Logical design for the Adapt approach with WebSphere Message Broker

Again we position between the service consumer and this multitude of service
providers (with a varied array of protocols and interface patterns) a piece of
middleware to simplify the connectivity, centralize routing, mediate protocols and
content. This piece of middleware is in this case the Websphere Message
Broker. The words “different protocols and a multitude of protocols and
interaction patterns” represent the “power” feature of the WebSphere Message
Broker, so we know that from the point of view of connectivity we are on the right
way for solving the problem. As known, WebSphere Message Broker makes
available numerous message processing nodes, like Database node, Compute
node (with the speciality Java) , Filter node, Batch node, MQ node. JMS node,
WebServices nodes (HTTP(s) request and reply nodes), Aggregation node,
XSLT node and many others. These nodes allow us to implement the necessary
translations, routing and mediations.

Solution technique implementation
The solution technique in this scenario could best be described as a
“brokered/mediated service interface pattern, because the service interface

RM

DS

EJBs

Service
consumer

B

B

B

D

service interface
SOAP over JMS

S

S

WebSphere Message
Broker

S

S

service interface
MQ

service interface
SOAP over HTTP

S

BJava

S

B

Service
consumer

Java Node

Batch Node

Application Server

Application Server

Batch processes

Service
consumer

Service
consumer

S

S

channel

channel

channel

channel
174 SOA Architcture Handbook for z/OS

Draft Document for Review January 29, 2007 3:05 pm 7331ch05.fm
accessed by the consumer will be implemented in the WebSphere Message
Broker.

Process Overview
1. The developer restructures the application by decomposing the

routing/mediation parts, and creating eventually more service
implementations. The bindings and interaction pattern of the service
interfaces can be created based on the business requirements; WebSphere
Message Broker will take care of the necessary translation between the
service consumer and the service providers

2. The developer uses the WebSphere Message Broker Toolkit to create the
message flows. The initial WSDL is known from the application (we said that
the prerequisite was that all applications are service enabled); the WSDL can
be created or imported, and then used in the WebServices nodes. WMB
makes available for the WebServices nodes a WSDL generator and a WSDL
import wizzard, with high flexibility for modelling SOA messages, WDSL types
and interaction patterns.

As an example, the message flow for defining a WebService might look like in
the Figure 5-27 on page 176. The nodes Implementation, Implementation1
and Implementation2 are the places where the developer, using the nodes
available, implements the processing, and parts of the processing is the call
of existing services. We see that the developer has a high flexibility in
implementing the Web service both in the area of connectivity (multiple
transports) and interaction patterns, but also in the the access to back-end
services (multiple node types).
 Chapter 5. SOA implementation scenarios 175

7331ch05.fm Draft Document for Review January 29, 2007 3:05 pm
Figure 5-27 Example of implementation of a Web service in the WebSphere Message
Broker

3. The WebSphere Mesage Broker administrator deploys the message flows to
the runtime.

For detailed information

5.3.3 Using the Innovate transition approach

The ”Innovate” transition approach is even more intrusive than “Adapt”. In this
approach an existing multichannel application will need to be changed to meet a
fairly high SOA maturity level. In any case this includes a full “separation of
concerns” and a high reusability level of services.

At this point we would want to have the presentation logic in the various channels
clearly separated from the rest of the application. Also, standards-based service
interfaces should be in place and an ESB must be implemented for mediation,
routing and event services.

It is likely that the backend functions will also need to be integrated using Web
services standards and through an ESB. This, however, may lead to the

Author Comment: References to do (ALK)
176 SOA Architcture Handbook for z/OS

Draft Document for Review January 29, 2007 3:05 pm 7331ch05.fm
implementation of one or several scenarios as discussed in 5.2, “SOA
implementation scenarios for 3270 application” on page 135.

Variation 1: SOA enablement of a fat client (client/server)
application

Simplified, a fat client application is an application with a combination of
presentation and business logic implemented on the client device. It is not
unusual that this presentation and business logic is very tightly integrated. In
some cases, even data access logic is implemented on the client.

The communication protocol with the server can be any protocol, HTTP, TCP/IP,
MQ, RMI/IIOP and even SNA-based communication is not impossible. This is
illustrated in Figure 5-28

Most commonly used languages for a fat client are Java, C, C++ or Visual
Basic®.

The backend server could provide a service interface based on for example
CORBA, or it could be as simple as providing connectivity to data.

Figure 5-28 Logical overview of the Fat client scenario

The fat client starting point
The starting point for the scenario is the example in Figure 5-29 on page 178 that
is labeled “Fat client”. The examples labeled “Rich client” and “Thin client” are
evolutionary steps towards an SOA, but could also be the starting points.

Note: A client nowadays can be a variety of devices, such as a Windows
workstation, PDA device, smartphone, ATM, kiosk or any other device that can
communicate with a server.

ServerFat client

B D
Native

 Protocol

D

- or -

P B D

P B

- or -
 Chapter 5. SOA implementation scenarios 177

7331ch05.fm Draft Document for Review January 29, 2007 3:05 pm
Figure 5-29 Possible evolution towards the innovate approach of the migration of a fat
client

Solution technique implementation
The solution technique in this scenario could best be described as a mix of
“Adapter-provided service interface” and “native service interface” patterns.

� Adapter, because there will be a standard service interface in front of the core
backend functions. There is though a possibility that the core functions need
to be changed to fit into the new architecture.
The service interface is located in the core transaction server.

� Native, in case backend services are called directly using native SOAP calls.

Process overview
To apply the Adapt transition approach to this example, the following needs to be
considered.

� On the server tier:

a. Can an adapter-provided service interface pattern be applied?

• What can be done to standardise the native protocol between the client
and the server?

• Is the protocol based on proprietary communication, and how can that
be opened up?

Server

B D

D

- or -

Se
rv

ic
e

In
te

rfa
ce

“Thin client”

P

“Rich client”

P B

“Fat client”

P B D

P B

- or -
178 SOA Architcture Handbook for z/OS

Draft Document for Review January 29, 2007 3:05 pm 7331ch05.fm
• What platform is the server running on. If it’s CICS or IMS, maybe the
techniques that are described in the 3270 transition scenario chapter
could be applied.

b. Can a native service interface pattern be applied?

• What about the application architecture? Are the services structured in
a way so they can be packaged and used by another protocol than they
originally are built for.

c. Can the a broker/mediated service interface pattern be applied?

• Could messaging, such as WebSphere MQ be used?

� On the client tier:

a. Can the presentation logic be separated from the business logic?

• Is the application layered in a 3-tier model?

• How about data access? Is it clearly separated in the code?

• Are new requirements on the client platform introduced? User
interaction, security, role based interactions etc.?

b. Can the business logic from the “fat client” be reused and packaged as
server side components? Or is it necessary to rewrite using another
technology maybe?

One possible way to go is to migrate to a “Rich client” (illustrated in Figure 5-29
on page 178), with most business logic deplyed on the server. Maybe callable via
SOAP, or as EJBs through RMI/IIOP.

Some client applications require the speed and input validation functions
provided by the fat/rich client, so maybe that is the target? Other applications
might provide the right functionality running in a Portal, with role-based
interactions.

There are many considerations in this scenario, and not one single answer to
these questions. It is very much about deciding on the strategic and tactical steps
for the migration.

The rich client starting point
If the application already is at the level of a rich client, it is probably a lot easier to
migrate to an SOA and a thin client based solution. The reason for this is that
there is a more clear distinction between presentation, business and data logic.

The platform of the rich client provides access to an open standards based
protocol for communication with the services on the backend server.
 Chapter 5. SOA implementation scenarios 179

7331ch05.fm Draft Document for Review January 29, 2007 3:05 pm
For detailed information
� Redbook: Patterns: SOA Client - Access Integration Solutions -

http://www.redbooks.ibm.com/abstracts/sg246775.html

Variation 2: Using Portal
A variation of the innovate transition approach consists in the possibility of
redeveloping the presentation part of the application, positioning it on a Portal
and use standard interfaces to access the services. This solution opens in fact an
additional channel (we are in the multi-channel case) for the application. There
are many sub-variations in the Portal use.

The Portal solution can be implemented only if we have a clear separation of the
presentation from the business part of the application.

The portal solution capability for composing applications takes advantage of the
functions available in the WebSphere Portal Server; these are placed into the
category “on the glass” and “under the covers”. In the category “on the glass” we
have:

� Portlet technology
� Web services technology
� Web clipping technology
� Java Server Faces (JSF) technology

In the category “under the covers” we have:

� Adapters technology
� Broker technology (in its two possible instances WebSphere ESB and

WebSphere Message Broker)
� Web services technology
� Service Data Objects (SDO) technology
� Information services technology (like XQuery, SQL)

The simplest implementation of a Portal integrates access to services using the
above mentioned technologies. The existing services can be either Web services
located in application servers, or information services, or even “green screen”
applications which can be accesed by the HATS portlet. Figure 5-30 on page 181
shows the logical architecture of such a Portal solution. This shows the portlets
accessing directly services (through their Web services capability, for example)
or using the mediator implemented by the ESB.
180 SOA Architcture Handbook for z/OS

http://www.redbooks.ibm.com/abstracts/sg247126.html

Draft Document for Review January 29, 2007 3:05 pm 7331ch05.fm
Figure 5-30 Logical architecture for a simple portal implementation

A more sophisticated portal solution (and the one that allows creating composite
applications) is the one in which the portlets themselves are part of new business
logic. In this case we use the capability of the portlets to interchange data and
messages, the BPEL-based choreography engine and human-task list, and the
possibility of specifying business rules for composing applications.

The portlets are not only availabe to exchange data and messages, but they can
be automatically triggered when changes occur in other portlets. The interface
between WebSphere Portal and WebSphere Process Server contributes to
complete the solution.

The logical architecture of this implementation is shown Figure 5-31 on
page 182.

DS

EJBs

portlet

B

B

B

D

service interface
SOAP over JMS

S

S

ESB implementation

S

service interface
MQ

service interface
SOAP over HTTP

S

B

S
B

portlet

Application Server

Application Server

Batch processes

portlet

portlet

S

direct access to services

direct access to services

mediated access

D

P

P

Portal server
 Chapter 5. SOA implementation scenarios 181

7331ch05.fm Draft Document for Review January 29, 2007 3:05 pm
Figure 5-31 Logical architecture for a composite portlet application

Solution technique implementation
The solution technique in this scenario could best be described as a mix of the
“adapter-provided service interface” pattern and the “native service interface”
pattern.

� Adapter, because there will be a standard service interface in front of the core
backend functions. There is though a possibility that the core functions need
to be changed to fit into the new architecture.

� Native, in case backend services are called directly using native SOAP calls.

Process overview
1. The portal designer uses the tooling to produce the page layout and the

portlet design.

DS

EJBs

portlet3

B

B

D

service interface
SOAP over JMS

S

S

ESB implementation

S

service interface
MQ

service interface
SOAP over HTTP

S

B

S
B

portlet4

Application Server

Application Server

Batch processes

portlet2

portlet1

S

direct access to services
(information service)

direct access to services

mediated access

D

P

P

Portal server

B B B

Process Server

Composite application

exchange data and
messages

human interaction

human
tasklist
182 SOA Architcture Handbook for z/OS

Draft Document for Review January 29, 2007 3:05 pm 7331ch05.fm
2. The administrator deploys the produced artifacts in the runtime.

5.4 SOA implementation scenarios for batch

Service enabling batch applications involves establishing new interfaces to
initiate or invoke batch components as services.

A batch job may be considered as one probably large component. Or, it may be
considered consisting of several minor components exposed by steps or perhaps
even more granulated by individual programs or subroutines inside one step.

The flow of batch jobs or the flow of steps within a batch job can be considered a
workflow, a composite service consisting of several atomic services implemented
by the individual jobs or job steps.

Figure 5-32 shows how batch is invoked.

Figure 5-32 Overview of batch invocation

z/OS

Initiator
Step

DataStepJob incl.
steps

Initiator

Plan Scheduler

Trans
action

Reader

z/OS

Initiator
Step

DataStepJob incl.
steps

Initiator

Plan Scheduler

Trans
action

Reader

z/OS

Initiator
Step

DataStep
Initiator

Plan Scheduler

Trans
action

Reader Step
Pgm
 Chapter 5. SOA implementation scenarios 183

7331ch05.fm Draft Document for Review January 29, 2007 3:05 pm
Based on a plan the scheduler invokes the batch job involving the reader and the
initiators.

Batch jobs may also be invoked from TSO or a transaction server by writing
directly to the internal reader.

With WebSphere MQ (WMQ), batch jobs can be triggered by messages arriving
on a queue.

The batch job consists of one or more steps including one or more programs. It
receives input in the form of parameters, sysin, datasets, messages or database
rows. And it delivers output in the form of condition codes, sysout, sysprint,
datasets, messages and database rows.

Furthermore, the batch job can be considered a workflow consisting of one or
more automatically invoked activities.

In this chapter we will look at batch both from a consumer and provider
perspective.

Table 5-3 shows a summary of the variations of the SOA implementation
scenarios for batch jobs that will be discussed in this chapter. We will see that
service-enabling of batch clearly still provides less options than we have seen in
the previously discussed OLTP scenarios.

In addition to the traditional approaches, a very pragmatic “leave be” approach is
described. It is not a real transition approach as no existing code is reused, but it
may turn out to be a very popular solution in many organizations.

Table 5-3 Summary of batch variations

Transition approach Variation Discussed in

Improve Making a job or job step
reusable as a service
without changing any code

5.4.2, “Using the improve
transition approach” on
page 187

Adapt Variation 1: Improve the
granularity of the services
in batch and integrate them

5.4.3, “Using the adapt
transition approach with
batch as the service
provider” on page 189

Adapt Variation 2: Call reusable
Web services from batch
programs, eventually
through an ESB

5.4.4, “Using the adapt
transition approach with
batch as the service caller”
on page 191
184 SOA Architcture Handbook for z/OS

Draft Document for Review January 29, 2007 3:05 pm 7331ch05.fm
5.4.1 Multi entity handling in batch services

Before moving to the individual transition approaches a batch characteristic
should be taken into account. No matter which transition approach you may
choose, you are probably facing the challenge that large amounts of data and
data entities are processed in each program invocation.

As shown in Figure 5-33, a batch program needs a service to process several
records or messages.

Figure 5-33 Multi entity handling in batch

Logically, it can be done in either of two ways:

1. The service caller invokes the service provider once for each entity to be
processed.

2. The service caller invokes the service provider once and expects the provider
to process all entities in the same instance.

Innovate Fully reuse functions
inside batch from
anywhere

5.4.5, “Using the innovate
transition approach” on
page 192

“Leave be” Special case: Leave batch
be and develop new SOA

5.4.6, “A practical, mixed
approach” on page 196

Transition approach Variation Discussed in

z/OS

Initiator
Job Step
Service
caller

Service
provider Data

Entities

Service
providerService

provider

z/OS

Initiator
Job Step
Service
caller

DataEntities
Service
provider

n calls

1 call
n entities
 Chapter 5. SOA implementation scenarios 185

7331ch05.fm Draft Document for Review January 29, 2007 3:05 pm
Service call per entity
This is a more pure SOA approach and data can easily be exchanged as
parameters, for instance as XML in a SOAP message.

A natural consequence is a considerable resource consumption due to a
corresponding number of external calls including housekeeping.

Service call once for all entities
This may be a less pure SOA approach, but a more pragmatic one. With this
approach a higher lever of performance can be achieved. The overhead of
invoking a service many times individually can be avoided. It works like a kind of
caching.

But how can the large amount of data entities be exchanged? WMQ gives a good
answer to that. Messages can be exchanged between reusable services in a
platform and location independent manner. With WebSphere Message Broker
(WMB) it may even be possible to achieve protocol transparency.

In case of WMQ, “pipelining” can be exploited to achieve a level of parallelism.
The service provider can start processing the messages while the caller is still
producing messages. This naturally depends on the demands for transaction
support and units of work.

With WMQ, even further parallelism can be achieved by asynchronously
triggering more services.

The multi-entity call approach also provides means for accumulations and other
cross entity information and calculations usually seen in batch.

Call approach determination
In order to determine which approach is the most appropriate, some factors
should be considered:

� What is the intended use of the service provider?

� Can it be determined whether it is expected to be invoked with one entity at a
time or with large amounts of entities? The transition approach selection may
be dependent on that.

� Can the service be deployed in two implementations with controlled
redundancy?

� With parallel processing of multiple entities provided by WMQ, batch job
duration can be reduced thereby narrowing the batch window.

Under any circumstance, it is likely - and recommended - that changing the
existing well running batch jobs could and should be questioned.
186 SOA Architcture Handbook for z/OS

Draft Document for Review January 29, 2007 3:05 pm 7331ch05.fm
5.4.2 Using the improve transition approach

The logical architecture for an “Improve” solution is shown in Figure 5-34.

Figure 5-34 Logical architecture for the “Improve” batch variations

Considering the batch job as a service, it may be invoked in its complete state. It
can be invoked by the scheduler as a main service or it can be invoked from an
external service caller as a Web service3.

Solution technique implementation
The original batch job may be split up in several batch jobs in order to make each
of these service callable in the desired granularity. Or it may be considered a
service including all the original steps. In the improve solution the batch job may
be considered a sort of workflow, but it will not be considered a composite
service as the individual steps are not invoked as services.

In order to invoke a batch job as a service, a service interface has to be provided.
Tivoli Workload Scheduler provides support for Web services interfaces, so any
scheduling function can be accessed. Otherwise, a separate interface to the
scheduler involved must be developed to access information in the scheduling
plan and have the job initiated and controlled. Invoking the reader directly is not
considered a good idea. If a job scheduler is implemented, you probably want to
manage all jobs through this and do not accept direct write to internal reader. In
any case, you cannot call batch programs directly without a job or a started task.

The existing program logic can stay unchanged.

� If the complete batch job is intended to be exposed as a service, no changes
are needed at all, neither in the logic nor in the flow (JCL).

� If one or more steps are intended to be exposed as services, no changes are
needed in the logic, but new flows must be created. It must be ensured that

3 This depends of course on the capabilities of the scheduler product being used.

z/OS

Service caller

Batchjob

B DScheduler
PlanS
 Chapter 5. SOA implementation scenarios 187

7331ch05.fm Draft Document for Review January 29, 2007 3:05 pm
the service receives all the input it needs to execute the service function, and
that it can provide a proper response and output to the service caller.

If a subprogram or a subroutine is intended to be exposed as a service, this
cannot be done by the improve solution. Some level of reprogramming is
required and it will fall into one of the two subsequent transition approaches,
adapt or innovate.

In any case, when the service is implemented as a batch job, by nature an
asynchronous process, no synchronous response will be provided to the caller.
An asynchronous response may be provided via WMQ or a mailing service
indicating the batch job completion or progress.

Process overview
SOA-enabling a batch application with the improve approach involves the
following steps:

1. Identify and select service candidates among jobs and jobsteps.

2. Establish new JCL flows if necessary.

3. Establish the Web service components to interface to the scheduler. Exploit a
standard Web services interface if available or write your own.

For detailed information
� IBM Tivoli Workload Scheduler, homepage:

http://www.ibm.com/software/tivoli/products/scheduler/

� Product documentation: Tivoli Workload Scheduler, Reference Guide.
http://publib.boulder.ibm.com/infocenter/tivihelp/v3r1/topic/com.ibm
.tivoli.itws.doc/srf_mst323.htm

Observations when using an improve transition approach with
the batch scenario

Advantages:

� Quick implementation.

� No impact on existing applications. Can run unchanged. Low risk.

� Low complexity in implementation.

Disadvantages:

� Real value of reusable logic may not be exploited.

� Business services not really exposed.
188 SOA Architcture Handbook for z/OS

Draft Document for Review January 29, 2007 3:05 pm 7331ch05.fm
5.4.3 Using the adapt transition approach with batch as the service
provider

The logical architecture for the “Adapt” transition approach is shown in
Figure 5-35.

Figure 5-35 Logical overview of the batch “Adapt” transition approach

Two variations are available:

1. Batch-to-batch. Batch is kept as the runtime environment.

2. Batch-to-transaction. Reusable programs or subroutines are refined and
redeployed in a transaction server.

Batch-to-batch
The batch-to-batch solution can be considered an extension to the improve
transition approach.

Reusable subprograms and subroutines may be put in separate steps and
service enabled the same way as in the improve solutions. This implies that they
can not be invoked directly but always through the scheduler.

In this solution too, a SOA interface must be existent in order to access the
scheduler plan and have the job initiated and controlled.

z/OS

Service caller

Batchjob

B DScheduler
PlanS

Transaction server

B DS
 Chapter 5. SOA implementation scenarios 189

7331ch05.fm Draft Document for Review January 29, 2007 3:05 pm
In this case, changes to program logic is necessary. It requires some code
analysis to ensure that the service gets all the input information it needs to
execute the desired action and that it can provide a proper response and output
to the service caller. The SOA interface itself however is provided by the job
scheduler as a web service or by a homegrown component.

Batch-to-transaction
In the batch-to-transaction solution, reusable subprograms and subroutines are
adjusted to run as services in a transaction server like CICS or IMS. Probably not
in WAS as they are not written in Java.

The services are deployed as standard business services but they have not been
implemented based on a real methodological approach.

Process overview
SOA-enabling a batch application using the batch-to-batch solution involves the
following steps:

1. Identify and select service candidates among jobs, steps, subprograms,
subroutines.

2. Establish new JCL flows.

3. Establish the Web service components to interface with the scheduler. Exploit
standard Web services interface if available or write your own.

SOA-enabling a batch application using the batch-to-transaction solution involves
the following steps:

1. Identify and select service candidates among jobs, steps, subprograms,
subroutines.

2. Prepare and deploy the services in a transaction server.

3. Establish the Web service components to interface the transactions.

For detailed information
� IBM Tivoli Workload Scheduler, homepage.

http://www.ibm.com/software/tivoli/products/scheduler/

� Product documentation: Tivoli Workload Scheduler, Reference Guide.
http://publib.boulder.ibm.com/infocenter/tivihelp/v3r1/topic/com.ibm
.tivoli.itws.doc/srf_mst323.htm

� Redbook: Application Development for CICS Web Services.
http://www.redbooks.ibm.com/abstracts/sg247126.html

� Redbook: Implementing CICS Web Services.
http://www.redbooks.ibm.com/abstracts/sg247206.html
190 SOA Architcture Handbook for z/OS

Draft Document for Review January 29, 2007 3:05 pm 7331ch05.fm
� Redbook: IMS Connectivity in an On Demand Environment: A Practical Guide
to IMS Connectivity
http://www.redbooks.ibm.com/abstracts/sg246794.html

Observations when using an adapt transition approach with
the batch starting scenario

5.4.4 Using the adapt transition approach with batch as the service
caller

The logical architecture for batch as the service caller is shown in Figure 5-36 on
page 191.

Figure 5-36 Logical overview of the batch as a service caller variation

A batch program can act as a service caller. It may invoke SOA compliant
services through an ESB. It may even invoke services in batch through a native
or another SOA interface as described in the improve solution paragraph above.

Considerations concerning invoking services from batch as compared with other
invocation methods are:

Advantages:

� Relatively quick implementation. Some coding needed.

� Value of reusable logic exploited to a certain extent.

� Relatively low complexity in implementation.

Disadvantages:

� Risk getting redundant code. Existing batch jobs may not be changed.

� Business services exposed only to a certain extent.

� Perhaps too quick solution. Does not really implement SOA. A real
methodological approach should probably be taken instead.

Transparent location/provider

Transparent environment

Service
ESB

Message Broker S

z/OS

 Batch job

Service caller

B B D
 Chapter 5. SOA implementation scenarios 191

7331ch05.fm Draft Document for Review January 29, 2007 3:05 pm
� Calling sub-programs natively provides better performance than service
invocation.

� Can create unwanted wait situations for the batch job. Waiting for online
transactions to complete. Waiting for synchronous or pseudo synchronous
partner processes to complete.

� May be used in connection with asynchronous WMQ based communication
with partners. Implies dependences to message broker availability and
responsiveness.

Process overview
Preparing a batch application to act as a service consumer involves exploitation
of standard interfaces to the ESB installed.

Observations when using the adapt transition approach with
the batch starting scenario

5.4.5 Using the innovate transition approach

The logical architecture for an “Innovate” solution is shown in Figure 5-37.

Advantages:

� Reuse of real business services from batch.

Disadvantages:

� Large performance impact if high volume calls.

� Delays or instability may occur as a result of external callouts.
192 SOA Architcture Handbook for z/OS

Draft Document for Review January 29, 2007 3:05 pm 7331ch05.fm
Figure 5-37 Logical overview of the batch “Innovate” variation

Solution technique implementation
The logical architecture for the innovate transition approach looks similar to the
adapt transition approach. The core logic could be used unchanged but it is likely
that re-engineering is needed and that new business services appear as a result
of a methodological approach. The most probable deployment destination is a
transaction server like WebSphere Application Server (WAS), CICS or IMS.

It is possible that some re-engineered services can be deployed in batch.

The differences by enabling a service in an application server and a batch job
are:

� If the service is deployed in an application or transaction server, the service
caller can have a synchronous response, as opposed to the batch
implementation where no direct response back is created.

� In a transaction server the services can be invoked synchronously or
asynchronously.

� With the use of message protocols in a transaction server, even
pseudo-synchronous invocation is possible. Pseudo-synchronous invocation
provides the opportunity to call several services asynchronously, in parallel
and correlate the responses (reply-messages) in the caller.

z/OS

Service caller

Batchjob

B DScheduler
PlanS

Transaction server

B DS
 Chapter 5. SOA implementation scenarios 193

7331ch05.fm Draft Document for Review January 29, 2007 3:05 pm
� In the transaction server implementation, the service interface is directly
connected to the service code itself where in the batch implementation, the
interface is connected (indirectly) to the scheduler.

From batch job to process flow
A batch job can be considered a flow of activities in a process. See Figure 5-38.

Figure 5-38 Illustration of a batch job as a sequence of activities

The flow of logic in a batch job expressed in steps, programs and embedded
sub-programs may be considered a composite service consisting of separate
atomic services. The navigation between the activities is based on a binary

z/OS
Batch job

StepScheduler
a.o. Step Step Step

z/OS
Process server

ActivityActivity

Activity

Activity

z/OS
Process server

Activity

Activity Activity Activity

Activity

Activity

Activity
194 SOA Architcture Handbook for z/OS

Draft Document for Review January 29, 2007 3:05 pm 7331ch05.fm
determination whether a step in the predefined sequence will be executed or not,
managed by condition codes.

In this innovate transition approach:

� The atomic services must be identified as a result of a structured
methodology. A decomposition based on the step structure may not reflect the
basic logical service structure.

� Business rules may be extracted from the code and implemented in the
process flow, making the atomic activities more granular and reusable.

� When a proper decomposition has been produced, atomic services can be
developed and deployed.

� A composite service can be implemented including several atomic services. It
may be deployed in a message broker or a process server.

� Even if it may be technically possible to implement it as a batch job it may not
be a good idea. Batch jobs must run unattended with no manual interference.
Call outs from batch can also affect the batch operation. There may be
external interrupts or delays causing stops or exceeded batch durations which
may result in extended batch windows.

Process overview
SOA-enabling a batch application with the innovate transition approach involves
the following steps:

1. Identify and select candidate code.

2. Redevelop the code observing standard SOA methodologies.

3. Prepare and deploy the resulting services as standard services in a
transaction server.

4. Establish the web service components to invoke these standard services.

5. If applicable, create and exploit composite services.

For detailed information
� Redbook: Application Development for CICS Web Services.

http://www.redbooks.ibm.com/abstracts/sg247126.html

� Redbook: Implementing CICS Web Services.
http://www.redbooks.ibm.com/abstracts/sg247206.html

� Redbook: IMS Connectivity in an On Demand Environment: A Practical Guide
to IMS Connectivity
http://www.redbooks.ibm.com/abstracts/sg246794.html
 Chapter 5. SOA implementation scenarios 195

7331ch05.fm Draft Document for Review January 29, 2007 3:05 pm
Observations when using an innovate approach with the batch
starting scenario

5.4.6 A practical, mixed approach

A practical and feasible approach in many companies could be to:

1. keep existing batch jobs unchanged

2. follow the evolution and implement new code as standard services

3. as a consequence, live with the resulting redundancy for some time

This approach may imply a larger effort maintaining the applications, but it is
certainly a lot easier to implement. It may turn out to be the only possible
approach considering the scarcity of skills in these disciplines.

Advantages:

� Real business services produced and exposed according to standards.

� Large level of reuse.

Disadvantages:

� Large impact on existing applications.

� Change introduces risk.

� Requires skills and experience. In both existing and new technology.
196 SOA Architcture Handbook for z/OS

Draft Document for Review January 29, 2007 3:05 pm 7331ch05.fm
Observations when using this mixed approach with the batch
starting scenario

5.5 SOA implementation scenarios - Data access and
integration

In this chapter we describe SOA implementation scenarios for all variations
described in the “data access and integration” starting scenario. These variations
are:

� Data access

� Integrator

� Batch ETL

� Messaging ETL

When discussing the SOA implementation scenario for Integrator we will discuss
the idea of ”information as a service”. We describe which IBM products are
available on the z/OS platform to enable the concept of “information as a
service”, looking at them in the context of the IBM SOA reference architecture
(that means we will not discuss here the functionality available in the area of
aggregation, replication, consolidation, analytics, special queries, etc., but just
the functionality that enables the concept of “information as a service”).

Table 5-4 on page 198 shows a summary of the variations we discuss.

Advantages:

� Very fast implementation. No effort at all.

� No operational risks.

� Ultimate (existing) level Quality of Service.

� New real business services can be produced and exposed according to
standards.

� Some level of code reuse may be exploited.

� Low level of skills dependencies on short term.

Disadvantages:

� Redundant code to be maintained for a long time.

� Requires skills and experience. In both existing and new technology. Also
in the long run.
 Chapter 5. SOA implementation scenarios 197

7331ch05.fm Draft Document for Review January 29, 2007 3:05 pm
Table 5-4 Summary of data access and integration variations

We are structuring the sections based on the targeted level of SOA enablement
maturity (improve, adapt, innovate), similar as discussed in the other SOA
implementation scenarios.

5.5.1 Variation 1: Data access

In the following sections we discuss SOA enablement using an Improve and
Adapt transition approach of data access.

Data access using the Improve transition approach
The Improve transition approach looks at the way data access is taking place,
and will provide a SOA-enabler for the access. Considering the starting scenario,
access usually takes place from CICS/IMS transactions or batch programs, and
these components either:

� access data directly, using native data interfaces made available by z/OS and
the database subsystems

� or may use (in case of DB2) stored procedures to encapsulate business logic
and get data

The logical architecture for the Improve transition approach for data access is
shown in Figure 5-39 on page 199.

Transition approach Variation Described in

Improve Variation 1: Data access “Data access using the
Improve transition
approach” on page 198

Adapt Variation 1: Data access “Data access using the
Adapt transition approach”
on page 201

Adapt Variation 2: Integrator “Integrator using the Adapt
transition approach” on
page 203

Adapt Variation 3: Batch and
messaging ETL

“ETL using the Adapt
transition approach” on
page 209
198 SOA Architcture Handbook for z/OS

Draft Document for Review January 29, 2007 3:05 pm 7331ch05.fm
Figure 5-39 Logical architecture for SOA enablement of data access

In the case of DB2 and its stored procedures functionality we can devise another
logical architecture for the Improve transition approach, shown in Figure 5-40. As
seen, the business part of the application is split between the service caller and
DB2.

Figure 5-40 Logical architecture for SOA enablement of stored procedures access

Products used
DB2 for z/OS allows enabling DB2 data and stored procedures as Web services
through the Web Services Object Runtime Framework (WORF). So, DB2
becomes a service provider in SOA terminology, a SOAP enabled service
provider.

WORF runs inside WebSphere Application Server, and provides an environment
to create XML-based Web services that access DB2.

z/OS

DB2, VSAM, DL/I, XML...

Service caller
data access

Web services
enabler

D
BP

S

z/OS

DB2
Service caller
(application)

DB2 stored
procs.

access Web
services
enabler

D
BP

BS
 Chapter 5. SOA implementation scenarios 199

7331ch05.fm Draft Document for Review January 29, 2007 3:05 pm
A Web service is defined by using a Document Access Definition Extension
(DADX) file. In the DADX file we define Web services based on SQL statements
and stored procedures.

Based on the definitions in the DADX file, WORF performs the following actions:

� Resource-based deployment and invocation.

� Automatic service redeployment at development time when defining
resources change.

� HTTP GET and POST bindings in addition to SOAP.

� Handling the generation of any Web Services Definition Language (WSDL)
and UDDI information that the client application needs.

� Providing DB2 JDBC connection information for the target database.

� Can be easily generated via WSED/RAD tooling.

� Formatting the result into XML, converting types as necessary.

� The URL to invoke the Web service specifies the DADX file as well as the
SQL operation (method) that has to be invoked

Figure 5-41 shows the implementation of this solution.

Figure 5-41 DB2 access enabled through WORF

z/OS
WebSphere Application Server V6.1

Service caller

Windows

WebSphere Developer
for zSeries

WORF processorSOAP
serviceS

DADX definitions.HFS or zFS

DB2
tablesjdbc

stored procs.DADX Files

J2EE application
200 SOA Architcture Handbook for z/OS

Draft Document for Review January 29, 2007 3:05 pm 7331ch05.fm
Observations when using an Improve transition approach with
the DB2 access/stored procedures variation

Data access using the Adapt transition approach
In the Adapt transition approach we take a look at business logic positioned in
DB2 (stored procedures) and the way it can behave in a SOA-enabled
environment. This business logic can not only access data in DB2, but, through
user-defined extensions, can access external Web services. Therefore we have a
new logical architecture, which is shown in Figure 5-42. In this case the logical
architecture is at the same time the product implementation architecture.

Figure 5-42 Logical architecture of Adapt transition approach using DB2 stored
procedures

Advantages:

� Quick implementation - simple tooling and deployment, quick time to
market.

� Low complexity.

� No change in the business logic (stored procedures).

� Can be used to encapsulate stored procedures as SOA-enabled services
and improve reusability (can be called as a web-service from anywhere in
the SOA implementation).

Disadvantages:

� Requires WebSphere to position WORF.

� Additional overhead compared to native data access.

Service
provider

z/OS

DB2

Service caller
DB2 stored
procedure

D

BP

B

SSOAPHTTx (V/C)

SOAP/HTTP
 Chapter 5. SOA implementation scenarios 201

7331ch05.fm Draft Document for Review January 29, 2007 3:05 pm
Products used
IBM DB2 for z/OS has made available User-Defined Functions (UDFs) for
implementing Web services consumers in DB2. These new Web service
consumer UDFs enable the database system to directly invoke SOAP-based
Web services using SQL statements. This eliminates the need to transfer data
between Web services and the database. The Web services consumer converts
the results obtained by calling WSDL interfaces into DB2 table or scalar
functions.

When a service consumer receives the result of a Web services request, the
SOAP envelope is stripped and the XML document is returned. An application
program can process the result data and perform a variety of operations,
including inserting or updating a table with the result data.

Internally, DB2 provides these actions using a SOAP UDF:

� Receiving input parms from SQL statement.

� Composing HTTP/SOAP request based on the input to the UDF.

� Invoking TCPIP socket call via z/OS USS APIs and send HTTP/POST
request.

� Receiving reply back from Web service provider.

� Validating HTTP headers.

� Stripping SOAP envelope and return SOAP Body (include namespace
referenced in SOAP envelope) to DB2 client application.

This DB2 feature presents us with an interesting new architecture (shown in
Figure 5-43). In this architecture we see the possibility to indirectly SOAP-enable
batch COBOL programs as Web services consumers. We also see the
participation of DB2 services (provider and consumer) in an ESB (either
WebSphere ESB or WebSphere Message Broker).

Figure 5-43 DB2 stored procedures as service consumer and service provider in SOA

Service
provider

z/OS

Service
consumer DB2

stored procedure

S

SOAPHTTx (V/C)

SOAP/HTTP

DB2

COBOL batch
program calls DB2
stored procedure

W
eb

S
ph

er
e

E
SB

 o
r

M
es

sa
ge

 B
ro

ke
r

z/OS
WAS

WORFS
SOAP/HTTP

DB2 service
provider
202 SOA Architcture Handbook for z/OS

Draft Document for Review January 29, 2007 3:05 pm 7331ch05.fm
Observations when using an Adapt transition approach with
the DB2 consumer variation

5.5.2 Variation 2: Integrator

In the following sections we discuss SOA enablement using an Adapt transition
approach of data/information integration.

Integrator using the Adapt transition approach
In this topic we describe the SOA implementation scenarios for SOA-enablement
of the integrator scenario. Generally speaking we see the integrator scenario and
ask ourselves: what is being delivered by the integrator? The answer is clear:
information. Therefore we must find a way to describe and enable the discovery
of information in the SOA world, and in this way the concept of “information as a
service” appears.

Why “information as a service”?
In today’s large organizations, built over time through evolving technology, using
different product capabilities, changing application requirements, expansion and
mergers, different parts of the enterprise use different information management
systems to store and search their critical data. Each of these disparate systems
carry overlapping information, managed using various technologies and data
formats. As these information systems become more complex, they become
more difficult to change and increasingly expensive to maintain or develop.

The same problem that we have with applications systems exist in the data
integration area (multiple interfaces, spaghetti connectivity, high complexity,
redundant data positioned in different databases, no or little governance). We
would like to be in a situation like the one described in the Figure 5-44 on
page 204.

Advantages:

� Relatively easy to implement, some tooling support.

� Full participation of DB2 in an ESB.

� Can be used to indirectly SOA-enable COBOL batch programs.

Disadvantages:

� Requires changes in the DB2 / stored procedures business logic.

� Additional overhead compared to a native data access.
 Chapter 5. SOA implementation scenarios 203

7331ch05.fm Draft Document for Review January 29, 2007 3:05 pm
Figure 5-44 Information as a service presented as an layer separating the applications
from data

The SOA building block “Information Services
The discussion in this section revolves around the content of the Information
Services SOA building block. The building block contains a number of disciplines,
out of which we will focus on information integration services.

We define a new type of service for the information, and we apply the SOA
criteria for this service. The information service as defined will be reusable, have
an implementation-independent interface, will be location transparent and
transport neutral; it will behave as any other SOA service.

An Information service is a type of service that allows the managers of shared
information assets (such as customer information or product descriptions) a
consistent, auditable and secure way to share this asset while maintaining
control over how it is used. For the service consumer, the Information Service is
a trusted information source provisioned by people who understand the meaning
of the data and have responsibility for maintaining it.

And now we see one of the SOA principles at work: by separating the interface
from the implementation, service providers are free to change how and where
the data is produced and managed internally. For example, new application
requirements might prompt an enterprise decision to store some of the
information assets as XML native inside DB2. Having an interface above the
service provider (in this case DB2 with XML) allows the service consumer to
retrieve its data without being aware of the internal change that has taken place.

Invoking an Information Service is one of many ways of programmatically
accessing data. It is not appropriate for all types of data access. A typical
Information Service will have one or more of the following characteristics:

Create
Quote

Process Flow
Trigger

Create
Estimate

Process Flow

Trigger

Data
Warehouse

Packaged
Application

Legacy
Application
204 SOA Architcture Handbook for z/OS

Draft Document for Review January 29, 2007 3:05 pm 7331ch05.fm
� It will deliver information, that means there is a process that prepares pieces
of data from (possible different sources) and delivers it.

� Data preparation might include aggregation, synchronization,
standardization, duplication, reformatting, conversion, etc.
These combinations of data preparation tasks form data integration patterns.
Choosing the right pattern depends on the amounts of data, where the data
came from, when it needs to be delivered and in what form.

� Integrate multiple data sources.
Many business processes require information that results from processing
large sets of data, often from multiple sources. Bringing together this data can
be a data intensive process that calls for specialized data management tools.

� Provide virtualized views.
Virtualization provides transparency that masks the differences and
implementations of underlying data sources from users. Ideally, it allows data
from multiple heterogeneous sources to appear to the user as a single
system. The service consumer does not have to be aware of where the data
is stored (location transparency; again a SOA criteria), what language or
programming interface is supported by the data source (invocation
transparency), if SQL is used, what dialect of SQL the source supports
(dialect transparency), how the data is physically stored, whether it is
partitioned and/or replicated (physical data independence, fragmentation and
replication transparency) or what networking protocols are used (transport
neutrality). The user should see a single uniform interface, complete with a
single set of error codes (error code transparency).

� Reusability.
To be reusable, Information Services must be at the right level of granularity to
encapsulate an information need that is repeatable. An information service
should be designed in such a flexible way that it allows future changes,
without the need for changing the interface (extension of the interface should
be possible, the service consumers that use the older interface do not need to
change).

IBM products that can be used to create “information as a
service” components

The only product available on z/OS is WebSphere Information Integrator in
several flavors (classic federation, replication, Event Publisher for
DB2/IMS/VSAM). We will address only the SOA-relevant elements, not the
detailed functionality of the product. We will refer to the product in the remaining
of this section as WebSphere Information Integrator.
 Chapter 5. SOA implementation scenarios 205

7331ch05.fm Draft Document for Review January 29, 2007 3:05 pm
Websphere Information Integrator
WebSphere Information Integrator (WebSphere II) allows users to write
applications as if all of the data were in a single database, when, in fact, the data
may be stored in a heterogeneous collection of data sources.

By providing an SOA interface to these capabilities the Information Server gives
users real-time access to integrated business information across and beyond the
enterprise by publishing reusable services. These operations include the ability
to:

� Connect to any data or content, wherever it resides. It provides direct, native
access to relevant information sources (note: access to information, not to
data).

� Understand and analyze information, including its meanings, relationships
and lineage.

� Cleanse information to ensure its quality and consistency.

� Transform information to provide enrichment and tailoring for its specific
purposes.

� Federate information to provide a unified view to people, processes, and
applications.

WAS II delivers information services using an SOA framework called the IBM
WebSphere Information Services Director (WISD). WISD facilitates reuse of the
information service, by ensuring consistent definitions, packaging, and rules
applied to the data. WISD facilitates governance by centralizing control and
management.

WISD uses open standards and is is deployed on a J2EE-based foundation
framework that provides flexible, distributable and configurable interconnections
among the many parts of the architecture through accepted SOA standards.

WISD allows the same service to support multiple protocol bindings, all defined
within the WSDL file. This improves the utility of services (they can be used by
different client types) and therefore increases the likelihood of reuse and
adoption across the enterprise.

An information service can be invoked over the following bindings:

� Web service.
Web services compliant consumers can access the information services.

� SOAP over JMS.
In a messaging environment, the Information Services Director can
automatically generate an asynchronous JMS queue listener
(Message-Driven Bean) and route incoming messages into Information
206 SOA Architcture Handbook for z/OS

Draft Document for Review January 29, 2007 3:05 pm 7331ch05.fm
Services. It can adapt the output of an information service into a SOAP
message that can be posted to one or more JMS queues or topics.

� EJB.
For Java-centric development, the Information Services Director can generate
a J2EE-compliant EJB (stateless session bean) where each Information
service is instantiated as a separate synchronous EJB method call.

� Service Component Architecture (SCA).
This binding provides a client programming model and consistent way of
describing components as services available the WebSphere Enterprise
Service Bus product.

We return now to the Adapt transition approach. What we are trying to do is to
use the functionality delivered by the IBM products (previously described) in a
SOA-enabled architecture. Therefore we are interested to expose the
“information as a service” components, like shown in Figure 5-45.

Figure 5-45 Logical architecture for the integrator scenario

Products used
We can use, for the purpose of discussion, IBM WebSphere Information
Integrator. We have previously seen that the product can deliver its “information
service” over several bindings. Therefore we can envision several

z/OS

Information integration
solutionService caller

(application)
Information
as a Service

enabler
D

B

DB2

VSAM

XML

text

S
P

 Chapter 5. SOA implementation scenarios 207

7331ch05.fm Draft Document for Review January 29, 2007 3:05 pm
implementations of the logical architecture. Figure 5-46 shows some possible
implementations:

� An implementation where the SOAP-enabled service consumer access
WebSphere II over the provided Web services binding.

� An implementation where the access is over an MDB (generated by
WebSphere II), placed on the WebSphere Application Server, enabling it to
receive JMS message while being able to call the backend Integrator.

� An implementation where WebSphere II generates an EJB with backend
methods, and places the EJB on the WebSphere Application Server. This
means any Web services enabled client can now (over the WebSphere
Application Server), access the EJB and therefore the backend integrator.

� An implementation in which the “information as service” is reached using the
SCA binding over the WebSphere ESB bus.

Figure 5-46 Different implementations of WebSphere II SOA-enabled

Which of the several possible implementations can be implemented in a specific
enterprise depends on many factors (not the least being the complexity of the
landscape, the availability of the IBM products that will run the SOA-enabler
interfaces and the performance required).

z/OS

WebSphere
Application server

Service caller
(application) JMS

client

JMS

DB2

VSAM

XML

text

Service caller
(application)
SOAP client

EJB

SOAP

Web
Service

SCA
Interface

Service caller
(application)
SOAP client

WebSphere ESB

Service caller
SOAP client

Service caller
JMS client

WebSphere
Integrator logic

S

S S

EJBSMDB
208 SOA Architcture Handbook for z/OS

Draft Document for Review January 29, 2007 3:05 pm 7331ch05.fm
Observations when using an Adapt approach with the Integrator Starting scenario

5.5.3 Variation 3: batch and messaging ETL

In the following sections we discuss SOA enablement using an Adapt transition
approach of batch and messaging Extract Transform and Load (ETL).

ETL using the Adapt transition approach
From the logical point of view the batch ETL and messaging ETL look the same,
as shown in Figure 5-47 on page 210. As you can see, we interpret the ETL layer
as an ESB. In case of the batch ETL the ESB will contain file-drop attachments,
and the mediations are taking place inside the bus. In case of a messaging ETL
the ESB will contain messaging attachments.

We can implement the Extract Transform Load (ETL) functionality as mediation
flows inside the ESB, letting the bus be concerned with the reliable transport of
the data; the business rules that control the flow can also be implemented in the
ESB. As the business rules that govern the ETL process are implemented inside
the ESB, we have a dynamic and easily changeable application architecture.

If we implement this SOA concept we will have reduced considerably, for an
enterprise that has many file transfers, the number of connections (each
application connects to the ESB, instead of any-to-any between applications).

Advantages:

� Implementation of the SOA-enabled “information as a service”.

� All derived services inherit SOA characteristics and benefits.

� Allows new and innovative use of the “information service”, decoupling
business logic from data positioning/structure/representation.

� Allows easy creation of new data models and their access as information
services.

� No changes in data implementation are required.

� All the advantages of the Integrator related to data management and
access.

Disadvantages:

� Requires WebSphere Information Integrator and possibly other
WebSphere products for more flexible SOA-enablement (WebSphere
Application Server, WebSphere ESB)

� Additional overhead compared to a native data access.
 Chapter 5. SOA implementation scenarios 209

7331ch05.fm Draft Document for Review January 29, 2007 3:05 pm
Figure 5-47 Logical architecture for batch ETL and messaging ETL

The logical structure that we create for all applications in the enterprise is shown
in Figure 5-48 on page 211.

z/OS

z/OS

application

D

B

B

application
B

B

B

ESB

Service consumer

Service provider

S

S

210 SOA Architcture Handbook for z/OS

Draft Document for Review January 29, 2007 3:05 pm 7331ch05.fm
Figure 5-48 Enterprise SOA-enabled batch/messaging ETL

Products used
In the case of batch and messaging ETL we could use IBM WebSphere Message
Broker with the necessary nodes and mediations. The physical implementation
might look like in Figure 5-49 on page 212.

The consequences of this implementation are manyfold:

� The application (as a service consumer or provider) has only one attachment
point to the WebSphere Message Broker. There is no any-to-any
configuration necessary.

� The mediations and transformations are implemented as services inside the
WebSphere Message Broker, and as such can be written as reusable
components. They run in a controlled way and can be managed. The flow of

z/OS

z/OS

application

routi
ng

interface

transformation

z/OS

application

application

application

application

application

application

ftp mq

ftp
node

ftp

ftp
node

ftp to
mq

jms

jms

mq ftp

mq to jms

interfaces

interfaces

interface

transformation

WebSphere
Message Broker
 Chapter 5. SOA implementation scenarios 211

7331ch05.fm Draft Document for Review January 29, 2007 3:05 pm
mediations can be designed with existing tooling and deployed to the ESB
runtime.

Due to the many interfaces (and node implementations) supported by
WebSphere Message Broker it is possible to establish communication
relationships between service consumers and providers that have different
interfaces (for example a JMS/MQ service provider can receive FTP files as
sequences of JMS/MQ messages).

.

Figure 5-49 Implementation solution for batch/messaging ETL with WebSphere Message
Broker

Observations when using an Adapt transition approach with
the batch and messaging ETL starting scenario

z/OS

z/OS

application

application

T

R

WebSphere
Message
Broker

Service consumer

Service provider

interfaces

interfaces

messages

messages

ftp

ftp

transformation

routing

data

S

S

212 SOA Architcture Handbook for z/OS

Draft Document for Review January 29, 2007 3:05 pm 7331ch05.fm
5.6 SOA implementation scenarios for homegrown SOA

In 3.5, “Starting scenario - Homegrown SOA” on page 87 we discussed the
scenario in which companies have tried to implement some kind of Service
Oriented Architecture, with the objective to increase reusability and implementing
transparency. We have mentioned that there are many flavors of this scenario
and it is impossible to discuss them all. However, most of those existing Service
Oriented Architectures do have a few things in common:

� There is an abstraction layer before accessing the real business logic, either
implemented in a J2EE application server or a backend transaction manager
or database server.

� In most cases, the service interface is more a “wrapper” than a “native”
service interface.

� The transport between different servers or containers is usually taking place
using JMS / WebSphere MQ. In some cases, when the application
environment is all J2EE, we also see RMI-IIOP as transport mechanism.

Many of the “homegrown” SOAs do not comply to the SOA definitions as we have
them today and the maturity level is relatively low. In the homegrown SOAs we do
see the use of standards-based protocols and we do see some form of location
transparency, although implemented with homegrown frameworks. Reusability is
many times not ideal yet, as a major refactoring effort to improve service
granularity in the business logic has not taken place. “Spaghetti” logic is still
being invoked as “spaghetti”, but using a standards-protocol and a self-built
mechanism to provide location transparency. So, in most homegrown SOAs there
is work to do to really achieve the promised benefits of a modern SOA!

Advantages:

� Simplify the configuration of middleware and connectivity (enterprise wide).

� Increased flexibility for the applications.

� Interface independent.

� Publish/subscribe model possible for “ftp” based integration.

� Controlled transformation through configurable business rules.

Disadvantages:

� Installation of an ESB is necessary.

� Performance overhead compared with native messaging / native FTP.
 Chapter 5. SOA implementation scenarios 213

7331ch05.fm Draft Document for Review January 29, 2007 3:05 pm
Table 5-5 provides a summary of the variations discussed in this chapter.

Table 5-5 Summary of homegrown SOA implementation variations

The SOA implementation scenarios are based on the starting scenarios as
described in 3.5, “Starting scenario - Homegrown SOA” on page 87.

5.6.1 Using the Improve transition approach

Based on our starting scenarios, there is at least one option where the “Improve”
transition approach can be used. That is how to make the SOA Interface callable
via open standards based protocols, if that is not already the case.

Figure 5-50 Overview of the homegrown SOA Improve transition scenario

Approach Scenario Summary

Improve Introducing open
standards

“Open standards based
SOA Interface” on
page 215

Adapt Using an open
standards-based service
registry

“Open standards based
Service Registry” on
page 216

Innovate Various scenarios possible
based on maturity level

z/OS

z/OS

Service caller

Service Registry

Database Server

Database

T

Backend Server

B DAPI SOA Interface

Database

API

API

“Mediation light”
Syntax control
Transformation

S

214 SOA Architcture Handbook for z/OS

Draft Document for Review January 29, 2007 3:05 pm 7331ch05.fm
Solution techniques for “Improve”
The use of the Improve transition approach usually leads to the adoption of the
“Adapter-provided Service interface” pattern. In this scenario we will illustrate
how the in-house developed standard interfaces can be exposed via Open
Standards based protocols.

The core functions in the backend transaction server remain untouched in this
migration scenario.

Open standards based SOA Interface
Many homegrown SOA solutions use WebSphere MQ as transport protocol. On
top of WMQ, there is logic implemented that masks away some of the funtionality
typically available in a broker or ESB. That is what we call the SOA Interface in
Figure 5-50 on page 214. It is the SOA interface that is the entry point for the call
to the service.

The SOA interface provides functions to provide some level of location
transparency, such as correlating a queue to a service name. There may also be
some level of support for mediation, syntax control and transformation.

The Service Registry is located in DB2 or another datastore, exposed through a
technical API (developed in-house).

For this scenario, we assume that the backend functions in CICS and IMS will
remain the same, and called via the same interface as before. The changes we
apply are in the area of how the services are called.

Solution technique implementation
The solution technique in this scenario can best be described as an
“Adapter-provided Service interface” pattern, because we implement an
“adapter” in front of the Service Registry.

Process overview
Considerations when moving a homegrown SOA to an open standards based
service interface are the following

� What can be done to standardize the native protocol between the caller and
the provider?

– Is the protocol based on proprietary communication, and in that case, how
can that be opened up?

– Maybe the techniques that are described in the 3270 transition scenario
chapter could be applied.
 Chapter 5. SOA implementation scenarios 215

7331ch05.fm Draft Document for Review January 29, 2007 3:05 pm
� What about the application architecture? Are the services structured in a way
so they can be packaged and used by another protocol than they originally
are built for?

There are many considerations in this scenario, and not one single answer to
these questions. It is very much about deciding on the strategic and tactical steps
for the migration.

What we have illustrated is a way to enable the SOA Interface, to be accessible
via an open standards based API and protocol, e.g. SOAP.

For detailed information
� Redbook: Patterns: Extended Enterprise SOA and Web Services -

http://www.redbooks.ibm.com/abstracts/sg247135.html

5.6.2 Using the Adapt transition approach

The purpose of this scenario is to illustrate how to:

� Create a loose coupling between the caller and the homegrown SOA
interface.

� Enable a service caller to use open standards based protocols to access the
Service Registry in order to find a service.

� The Service Registry can be accessed via Open Standards based protocols,
and in that case, how the core back-end functions can be exposed as
services.

We assume that the SOA interface is callable via SOAP, as described in the
5.6.1, “Using the Improve transition approach” on page 214.

Open standards based Service Registry
Figure 5-51 on page 217 depicts how the Service Registry is used in calling a
service. Note that in this example we do not focus on how services are published,
but only how they are looked up.
216 SOA Architcture Handbook for z/OS

http://www.redbooks.ibm.com/abstracts/sg247126.html
http://www.redbooks.ibm.com/abstracts/sg247126.html

Draft Document for Review January 29, 2007 3:05 pm 7331ch05.fm
Figure 5-51 Overview of the homegrown SOA Adapt transition approach

Process overview
Considerations when moving a home grown SOA to an open standards based
service registry are the following:

� What can be done to standardize the protocol between the client and the
service registry?

– Should the service registry at all be in-house developed? Or is there a
product available that provides the functionality?

– Which protocol should be used?

– Maybe the techniques that are described in the 3270 transition scenario
chapter could be applied.

� What about the application architecture? Are the services structured in a way
so they can be packaged and used by another protocol than they originally
are built for?

There are many considerations in this scenario, and not one single answer to
these questions. It is very much about deciding on the strategic and tactical steps
for the migration.

What we have illustrated is a way to enable the SOA Interface, to be accessible
via an open standards based API and protocol, e.g. SOAP.

z/OS

z/OS

Service caller

Service Registry

Database Server

Database

T

Backend Server

B DSOAP

Database

Registry interface

APIS
 Chapter 5. SOA implementation scenarios 217

7331ch05.fm Draft Document for Review January 29, 2007 3:05 pm
For detailed information
� Redbook: Patterns: Extended Enterprise SOA and Web Services -

http://www.redbooks.ibm.com/abstracts/sg247135.html

5.6.3 Using the Innovate transition approach

An Innovate transition approach for a homegrown SOA could be, for example,
refactoring business logic to achieve a better granularity of the services or the
implementation of a full ESB, if not already implemented.

It depends on the maturity of the homegrown SOA and the ambition level to what
extent an Innovate transition approach is necessary.
218 SOA Architcture Handbook for z/OS

http://www.redbooks.ibm.com/abstracts/sg247126.html
http://www.redbooks.ibm.com/abstracts/sg247126.html

Draft Document for Review January 29, 2007 3:05 pm 7331ch07.fm
Chapter 6. Towards service integration
and process integration

In this chapter we discuss the following topics:

� Define the transition stages towards service integration and process
integration (by defining SOA implementation blocks) and present the
SOA-related activities to be implemented during these stages.

� Describe the reasons for moving from stage to stage.

� Describe the status of the enterprise after undertaking the transition
scenarios described in chapter 5.

� Indicate which IBM products will be positioned from stage to stage, and how
their features are exploited.

6

© Copyright IBM Corp. 2006. All rights reserved. 219

7331ch07.fm Draft Document for Review January 29, 2007 3:05 pm
6.1 The SOA implementation block approach

The approach called "SOA implementation blocks" allows an enterprise to select
individual elements of the SOA architecture to implement. Blocks can be
implemented one at a time or in groups designed to meet an immediate business
need. Some organizations will start by adding one block at a time as they build a
full SOA architecture. These organizations will achieve significant business value
with each block they add. Other organizations may design a solution that initially
requires multiple blocks to implement. Still others may start off with a design that
doesn’t pause until all the SOA blocks are in place. The process has then the
following steps:

1. Select blocks specific to the requirements.

2. Implement an immediate solution.

3. Execute a simple quick start.

4. Extend to more complex requirements.

5. Add additional blocks "as needed".

There are many ways to define the implementation blocks, their content and
granularity. Of course each enterprise will apply the activities defined in the block
according to its requirements; this is no “one fit for all solution”, but a process by
which the enterprise can see what has to be done generally in a building block
and then select the parts relevant for it.

We chose an approach favoured in other IBM documents that defines the SOA
implementation blocks in the following ways:

6.1.1 Stage one - “service enablement” implementation block

The following implementation block and its associated tasks leads to a stage of
being “service enabled”.

� Basic Web services.
This implementation block contains activities from the following list:
– Create services from tasks in new or existing systems.
– Enable external Web Services using a gateway.
– Integrate using “point to point”.
– Implement different technologies (J2EE, .NET, CICS, IMS, etc).
– Implement static SOAP binding.
– Build client stubs using WSDL.
– Position internal Web services.
– Use wrappers or adaptors.
– Enable connectivity to packaged applications (CRM, ERP, Supply Chain).
220 SOA Architcture Handbook for z/OS

Draft Document for Review January 29, 2007 3:05 pm 7331ch07.fm
– Enable connectivity to legacy systems and data.

6.1.2 Stage two - “service integration” implementation blocks

The following implementation blocks and their associated tasks lead to a stage of
being “service integrated”.

� Enterprise Service Bus exploitation.
This implementation block contains activities from the following list:

– Enable integration of applications and business processes across the
enterprise.

– Introduce routing and transformation capabilities.
– Introduce more advanced security and mediation.
– Use message brokering and ESB.
– Implement portal exploitation and page aggregation.

� Advanced services adoption.
This implementation block contains activities from the following list:

– Use Service Gateways.
– Introduce more complex aggregations of services exposed across multiple

applications.
– Include transactional semantics.

6.1.3 Stage three - “process integration” implementation blocks

The following implementation blocks and their associated tasks lead to a stage of
being “process integrated”.

� Business services exploitation.
This implementation block contains activities from the following list:

– Implement service oriented integration of business functions.
– Expose coarse grained business services.
– Implement provisioning and lifecycle.
– Implement policy-based business services.

� Business process orchestration.
This implementation block contains activities from the following list:

– Introduce business process modeling.
– Begin process choreography.
– Implement external business rules.
– Introduce flow and event management.
– Implement compensation.
 Chapter 6. Towards service integration and process integration 221

7331ch07.fm Draft Document for Review January 29, 2007 3:05 pm
� Discovery and dynamic binding.
This implementation block contains activities from the following list:

– Locating services exposed on the ESB - use a service registry for
discovery.

– Introduce “consumer discovers supplier” patterns.
– Implement dynamic consumption of WSDL.
– Implement dynamic Invocation of service.

The implementation blocks mentioned determine the level of SOA maturity being
achieved. Moving from one implementation block to the enxt one improves SOA
maturity and brings the enterprise close to the full SOA benefits, asuch as agility,
flexibility, business-IT alignment and time to market.

6.2 Stage one - “service enablement”

Most of the activities described under “basic Web services” must have been
completed before moving into “service integration” and “process integration”.

To resume, in this stage we created lots of services out of existing tasks,
packaged and legacy applications, and also used wrappers and adapters to
improve them. We created client stubs out of WSDL definitions and integrated
the client stubs into the service containers. We integrated “point-to-point”
between consumers and providers to use (and reuse) the just created services.
And we arrived at the following situation, depicted in the Figure 6-1 on page 223.
222 SOA Architcture Handbook for z/OS

Draft Document for Review January 29, 2007 3:05 pm 7331ch07.fm
Figure 6-1 Situation of the enterprise after undergoing service enablement

6.3 Stage two - “Service Integration”

For the purpose of this book we define service integration as consisting of the
following implementation blocks: Enterprise Service Bus exploitation (further
discussed in 6.3.1, “Implementing the block “ESB exploitation”” on page 226) and
Advanced Web Services Adoption (further dicussed in 6.3.2, “Implementing the
block “Advanced Services Adoption”” on page 236).

We want to reach the loose coupling situation, therefore we have to break the
point-to-point integration. We also want to increase reusability, but we cannot
afford to continue to build an unmanageable number of logical and physical
connections. There is no common place to store the definitions of these
connections, so each application will have to have an increasingly bigger
configuration file with static definitions for service providers. Of course, if we
continue this way, we increase the administrative overhead. There is also no
dynamics available, so it will not benefit the business. Figure 6-2 on page 224
shows the architecture we have at this moment.

Application Application Application Application

ApplicationApplicationApplicationApplication

Service Service Service Service

Service ServiceService Service

Interface Interface Interface

Interface Interface Interface Interface

Interface embedded in the application

g p

The new interfaces (for web services) were created through wrappers, adapters or taking
advantage of native web services support

We have decoupled the interface from the service

We have reduced the number and the complexity of the interfaces

We made the services reusable (conditional of same transport protocol)

Service Can be an application or data service

Interface New web service interface
 Chapter 6. Towards service integration and process integration 223

7331ch07.fm Draft Document for Review January 29, 2007 3:05 pm
Figure 6-2 Services are there, but limitations abound

We want to also start aligning the IT services created in the previous stage with
the business services. We have already seen that the “Improve” and “Adapt”
transition approaches produce services (SOA-style), but they are very seldom
aligned with the real business services. Since we are thinking in the future, we
want to put at the disposal of the business analyst as many business services as
possible, that he can manipulate at will in a secured environment.

That means that we have to identify these business services, and see that these
are either newly created or composed out of existing IT services and some other
pieces of infrastructure. Figure 6-3 on page 225 shows a business service
(called “Service provider D”) that contains pre-existing service primitives or parts
of them (it contains the business logic of Service A, part of Service B, and part of
Service C, all connected in a flow); we want to put the service interface on the
business service so that it can be used (called) by processes (we think here also
in the future). And in this way we start an intelligent way of reusing our “primitive”
services.

Attention: In several figures we will see the letter S positioned in a circle. This
represents a piece of service implementation, which can be either a stub
(proxy) on the client side, or a binding on the service provider side.

S

Config
file

Service
provider

S

Config
file

Service
consumer

S

Config
file

Service
provider

S

Config
file

Service
consumer

S

Config
file

Service
consumer

S

Config
file

Service
consumer

S

Config
file

Service
provider

Point-to-point integration

S

Config
file

Service
provider

Growing number of
information about

connection partners,
security definitions

Client stub based
on WDSL (static)

Static SOAP
binding
224 SOA Architcture Handbook for z/OS

Draft Document for Review January 29, 2007 3:05 pm 7331ch07.fm
Figure 6-3 Service aligned with the business

And when doing all this we will not forget data, the ‘forgotten” child of SOA. We’ll
remember that data as well should be exploited as “information”, so we will start
putting federation structures in place.

The clear conclusion of this discussion is that we have to put in place a sort of
ESB, like the one shown on Figure 6-4 on page 226.

All service consumers see the ESB as the “proxy” for the services they might
request. That’s why we have the “S” {service) positioned on the contour of the
ESB. All applications have now a very thin configuration file (containing the
information about where to find the ESB). The ESB is taking care now of “calling”
the right service. We just concentrated all connectivity logic in one place. At this
early ESB stage all configurations entries are statically coded inside the ESB
(through administrative tools).

S

S

Service
provider A

S

Service
consumer

S

Service
provider

S
Service

consumer

S

Information
as service

S
Service

consumer

S

Service
provider B

Service
provider C

S

Service provider D
alligned with business
 Chapter 6. Towards service integration and process integration 225

7331ch07.fm Draft Document for Review January 29, 2007 3:05 pm
Figure 6-4 The ESB has really become part of the infrastructure

6.3.1 Implementing the block “ESB exploitation”

In this building block the main objective is to start exploiting an ESB. All
applications that play on the “ESB” ground will need to reach loose coupling. The
ESB will need to provide for support of multiple integration patterns, multiple
transport protocols, usage of mediations, transformations and routing. Service
consumers and producers should be able to speak different protocols and we
should be no longer restricted to the SOAP protocol, both for the service
consumer and requester. Our architecture looks now like in Figure 6-5 on
page 227.

Note: The figure shows a “generalized” ESB, some interfaces might not be
supported by certain ESB products.

S

Service
provider

S

Service
consumer

S

Service
provider

S

Common Config file

Service
consumer

S
Service

consumer

S
Service

consumer

S

Service
provider

S
Service
provider

S S

SS S

Very thin configuration file

Static SOAP
binding

SOAP / HTTPSOAP / HTTP

SOAP / JMS MQSOAP / HTTP

SOAP / JMS

ESB

MQ
226 SOA Architcture Handbook for z/OS

Draft Document for Review January 29, 2007 3:05 pm 7331ch07.fm
Figure 6-5 Status at the end of the “Exploitation of ESB”

By installing an ESB we implemented all the activities required by this building
block. The degree of implementation can be seen in Table 6-1 on page 232; this
is of course highly dependent of the features delivered by the ESB chosen. The
only activity left for a short discussion is the portal exploitation and page
aggregation. The reasoning behind this is (beside the advantages given by a
portal itself) to allow the portlets - as service consumers - to be integrated into
the SOA architecture and to make the services available to the portlets. Now,
with the advent of the ESB, we can see the following architecture, shown in
Figure 6-6 on page 228

IBM Software Group

Service Service Service Service

Service ServiceService Service

Enterprise Service Bus

Service Service Service Service

Service ServiceService Service

Interface Interface Interface

Interface Interface Interface Interface

We have decoupled the interface from transport

We have sharply reduced the complexity of configurations necessary in services, and
relocated this inside the ESB

We made the services reusable regardless of transport, interface type, message format,
interaction pattern

Still static binding of services to the ESB

Service Integration stage –Exploitation of ESB
 Chapter 6. Towards service integration and process integration 227

7331ch07.fm Draft Document for Review January 29, 2007 3:05 pm
Figure 6-6 Portlets enable presentation integration through ESB

As you can see in Figure 6-6, portlets can access the message flows running
inside WebSphere Messgae Broker (through SOAP/HTTP), but can also reach
directly all SOA-enabled services (through the broker function). The architecture
enables the portal (located in the IBM SOA reference architecture - Interactive
Services) to aggregate information coming from different services.

What are the capabilities of an ESB?
First, let us see what an ESB should be able to do. There are many opinions
about what an ESB should contain and which features are required at which
stage. The main functions are, of course, routing, transformation, transport and
switching. But there are degrees of detail. We decided to use the terms ESB
basic and ESB advanced, which we will define next.

The basic capabilities should be:

� Support high volumes of interactions.
� Allow for centralized management, administration and control.
� Support various interaction patterns (message-oriented, event-driven,

synchronous request/response, asynchronous fire and forget, etc).
� Provide for mediations - resolve differences between the applications

attached to it.
� Allow connection independence (transport neutrality).

S

 IMS DB2

S

portlets

S

S

SOAP / HTTP

SOAP / HTTP

WebSphere Message Broker

CICS

SOAP / HTTP

Message flow

DB2 access

WebSphere Portal

S

228 SOA Architcture Handbook for z/OS

Draft Document for Review January 29, 2007 3:05 pm 7331ch07.fm
� Handle routing requests.
� Perform protocol transformations.

The advanced capabilities should be:

� Implement a service directory (in order to allow consumers to locate services
exposed on the ESB).

� Support multiple networks and protocols.
� Integrate databases.
� Support application adapters.
� Support language Interfaces (Java, C++, etc).
� Implement security (authentication, authorization, encryption) for the services

exposed on ESB.
� Provide message transformations, message enrichment, message and

service aggregation.
� Support logging.
� Implement advanced management, monitoring, administration and

policy-driven service-level management.
� Implement business rules.

All the above mentioned functions are differentiating elements between products.
Some of the functions will be implemented in an ESB-type of product, some in
other layers (for example, business rules are implemented in IBM WebSphere
Process Server).

Available ESB options
There are several options of building an ESB on the z/OS platform:

Option 1 - a “minimal” ESB based on WebSphere MQ
In this case the ESB has only the possibility of connecting services that “speak”
MQ or that have adapters that “speak” MQ. Any service consumer that produces
SOAP messages will have to put them inside MQ messages to be transported
through the ESB. At the other end, a service provider will retrieve the MQ
message and separate and process the SOAP envelope.

Any mediation, data transformation, or routing function must be specifically
coded by the developer (without specific tooling) and deployed in the runtime (as
triggers and exits). There is no support for protocol transformation.
Services are called “implicitly” by consumers through dropping messages on
their corresponding input queue; the replies are picked from the output queue.

This type of implementation does not fulfill the basic ESB characteristics.
 Chapter 6. Towards service integration and process integration 229

7331ch07.fm Draft Document for Review January 29, 2007 3:05 pm
Option 2 - A “light” ESB based on WebSphere Application Server Service Integration Bus (SIB)
The Service Integration Bus (SIB or SIBus) can be seen as a communication
structure inside of WebSphere Application Server that can be used by J2EE
applications to exchange messages using the JMS APIs. The SIB is part of WAS
since Version 6. The features of the SIB are:

� Provide managed communication for synchronous, asynchronous and
event-based messaging.

� Can be expanded through a “link” (simply a connection definition to a
messaging engine on another SIB, or an external WebSphere MQ Queue
Manager).

� This ESB will deliver for the service consumers a reduced amount of
connectivity options, specifically those allowed by the J2EE platform.
Supported application attachments are:

– Web services:

• Requestors can use JAX-RPC API.

• Providers run in WebSphere Application Server as stateless session
beans and servlets (JSR-109).

• Requestors or providers can attach via SOAP/HTTP or SOAP/JMS.

– Messaging applications:

• Inbound messaging using JFAP-TCP/IP (or wrapped in SSL for secure
messaging). JFAP is a proprietary format and protocol used for service
integration bus messaging providers.

• MQ application in an MQ network using MQ channel protocol.

• JMS applications in WebSphere Application Server V5 and v6.1.

• MQ client protocol.

– Message Driven Beans (MDBs):

• With EJB 2.1, Message Driven Beans (MDB) in the application server
that listen to queues and topics are linked to the appropriate
destinations on the service integration bus using JCA connectors.

The service providers themselves can be reached through the connectivity
allowed by WebSphere Application Server, either internally as Web services, or
externally as CICS/IMS/MQ SOAP-enabled services (through the SOA
enablements described in the Chapter 5, “SOA implementation scenarios” on
page 129), or through WebSphere Adapters to packaged applications.

Any mediation, protocol/data transformation, or routing function must be
specifically coded by the developer and deployed in the runtime (mediation
handlers). That means that if a service consumer speaks SOAP/HTTP, and the
230 SOA Architcture Handbook for z/OS

Draft Document for Review January 29, 2007 3:05 pm 7331ch07.fm
service provider MQ, a protocol transformation piece of code has to be written
and deployed. The same is valid if some data transformation is necessary
between incompatible formats. The “wiring” between service consumer,
mediations and service provider is static (administrative configuration).

This ESB fulfills some basic characteristics. We see in this “light” ESB some
limitations, but it might be a valid option for an enterprise who does not need the
features delivered by WebSphere ESB or WebSphere Message Broker out-of
the-box.

Option 3 - a “full service ESB”
There are two implementations: WebSphere ESB (WESB) and WebSphere
Message Broker (WMB). They are both full service ESBs because they
implement the basic functionality (transport services, mediation services, routing
services, event services) and much more.

WebSphere ESB has a limited amount of connectivity options, which impact the
types of service consumers and providers that can participate. This limitation,
though, might be irrelevant in an enterprise that has mostly J2EE applications.
The WebSphere Message Broker has its strong points in the areas of universal
connectivity and data transformation.

Table Table 6-1 on page 232 compares WebSphere ESB and WebSphere
Message Broker, among others, from the point of view of connectivity and data
transformations.

Selection criteria for an ESB
Table 6-1 on page 232 compares the two IBM ESB products on several
SOA-related criteria.

Important: Note that the specifications of the IBM ESB products are very time
sensitive. Functions and levels of specifications may change rapidly. We
recommend to always confirm the latest specs on the Web sites when making
a decision.
 Chapter 6. Towards service integration and process integration 231

7331ch07.fm Draft Document for Review January 29, 2007 3:05 pm
Table 6-1 Comparison between WebSphere ESB and WebSphere Message Broker

Function WebSphere Enterprise Service Bus V6.0 WebSphere Message Broker V6.0

Connectivity � TCP/IP, SSL, HTTP(S), IIOP
� JMS V1.1 (point-to-point, pub/sub)
� JMS/MQ (using MQLINK configuration)

� TCP/IP, SSL, HTTP(S)
� JMS V1.1 (point-to-point, pub/sub)
� Native WebSphere MQ
� Supports WebSphere MQ

Transport, WebSphere MQ
Everyplace Transport, Multicast
Transport, Real-time Transport,
SCADA Transport, Web Services
Transport, JMS Transport

� CICS, VSAM using SupportPacs
� Files using WebSphere Message

Broker File Extender

Web services
support

� SOAP/HTTP(S), SOAP/JMS, WSDL 1.1
� Supports WS-I Basic Profile V1.1
� UDDI V3.0 Service Registry
� WS-Security, WS-Atomic Transactions
� Client support: J2EE client, Message

client for C/C++ and .NET, Web
services client

� SOAP/HTTP(S), SOAP/JMS,
WSDL 1.1

� Supports WS-I Basic Profile V1.0
� Client support: JMS client,

Message client for C/C++ and
.NET, Web services client, MQI
client

Adapter support � WebSphere Adapters and WebSphere
Business Integration Adaptersa

� WebSphere Business Integration
Adaptersb

Mediation
programming
model

� WebSphere ESB has a programming
model based on Service Component
Architecture (SCA)and SMO (SDO plus
message header plus context).

� WebSphere Message Broker
supports the use of ESQL,
numerous Nodes (Compute Node,
Database Node, Filter node,
JavaCompute node, native JMS
Input/Output node, HTTP Node,
Filetransfer node, etc.) and flows.

Message
logging

� Provides prebuilt mediation primitives
for message logging

� Provides prebuilt message flow
nodes for message logging
232 SOA Architcture Handbook for z/OS

Draft Document for Review January 29, 2007 3:05 pm 7331ch07.fm
Message
transformation

� Protocol transformation between HTTP,
JMS, IIOP

� Custom transformation logic can be
implemented in Java, XSLT

� Supports transformation of XML, SOAP,
JMS message data format (many more
if used with adapters)

� Protocol transformation between
any protocols available as input or
output nodes (HTTP, JMS, MQ,
and more)

� Custom transformation logic can
be implemented in Java, ESQL, or
XSLT

� Supports transformation of
self-defined messages (XML),
built-in predefined messages
(SOAP, MIME, and more), and
custom predefined messages
(MRM)

Message
routing

� Content and transport/protocol based
routing

� Provides prebuilt mediation primitive for
message routing, or custom build
mediation using Java

� Supported through SCA

� Content and transport/protocol
based routing

� Custom routing logic can be
implemented in Java or ESQL

Database
access

� Built-in database lookup mediation
primitive

� Built-in nodes for database access
(Datanode ESQL, Java, graphical
mapping)

Validation � Validation of the input message against
its schema by configuration of primitives

� Validation of input and output
message against its schema
definition.

Event-driven
processing

� Supports event-driven processing by
leverage adapters for capture and
dissemination of business events

� Supports complex event
processing (processing of events
formed by several earlier ones)

Security � HTTPS support
� Authentication and authorization as part

of J2EE
� Support for WS-Security

� HTTPS support
� Authentication and authorization

by the operating system
environment

Quality of
service

� Assured delivery support by service
integration bus

� Transaction support provided by
WebSphere Application Server

� Configurative within SCA module
components

� Assured delivery support by
WebSphere MQ

� Transaction support by
WebSphere MQ (limited for JDBC
connections)

� Configurative within node
properties

Function WebSphere Enterprise Service Bus V6.0 WebSphere Message Broker V6.0
 Chapter 6. Towards service integration and process integration 233

7331ch07.fm Draft Document for Review January 29, 2007 3:05 pm
If we consider the two full ESB implementations, and we have the task of
selecting, we can use following short comparison.

WebSphere Enterprise Service Bus
WebSphere Enterprise Service Bus (WESB) is designed to provide the core
functionality of an ESB for a predominantly Web services based environment. It
is built on WebSphere Application Server, which provides the foundation for the
transport layer. If the user has a lot of Web services in its environment and
applications are primarily J2EE based, WebSphere Enterprise Service Bus is
likely to be the better product to use. Building an ESB that is based entirely on
WebSphere Enterprise Service Bus is an option when Web services support is
critical and the service provider and consumer environment is predominantly built
on open standards. However, if integration with non-Web service
standards-based services is a major requirement or there is very heteregenous
landscape of applications, then WebSphere Enterprise Service Bus might not be
the right choice.

WebSphere Message Broker
WebSphere Message Broker (WMB) provides a more advanced ESB solution
with advanced integration capabilities such as universal connectivity and
any-to-any transformation for data-centric deployments. It can handle services
integration as well as integration with non-services applications. WebSphere MQ

Integration
styles
supported

� Request/reply, Publish/subscribe � multiple integration styles
(request/reply, publish/subscribe
and others)

Management � High availability and scalability provided
by WebSphere Application Server
environment

� Built-in administration tools as part of
the WebSphere Admin Console

� Import bindings can be modified using
the WebSphere Administration Console

� Common Event Infrastructure (CEI)
support. Entry, exit and failure events
can be activated on all SCA
components within the mediation
modules

� Common Base Event browser for
viewing events from the CEI

� A high level of availability can be
achieved using multiple brokers in
combination with WebSphere MQ
clustering and WebSphere MQ
queue sharing. Queue sharing is a
unique feature of WebSphere MQ
on z/OS

� Built-in administration tools

a. Not all adapters are available for the z/OS platform.
b. Not all adapters are available for the z/OS platform.

Function WebSphere Enterprise Service Bus V6.0 WebSphere Message Broker V6.0
234 SOA Architcture Handbook for z/OS

Draft Document for Review January 29, 2007 3:05 pm 7331ch07.fm
provides the transport backbone for messaging applications. Typically, customers
who need a higher performance and throughput product in a message-centric
environment would use WebSphere Message Broker.

One interesting benefit available with WebSphere Message Broker is the
possibility of exposing Message Flows as Web services (therefore functioning as
service provider) as well as Message Flows calling Web services (as service
consumer). The implementation is done through the combination HTTP input
node / HTTP reply node. This architecture is shown in Figure 6-7.

Figure 6-7 Message flow with two roles: service provider (towards client) and service
consumer (towards IMS, DB2)

Here are a few typical WebSphere Message Broker Web services scenarios, and
we notice the role played by WMB:

� Make use of a Web service (consumer role)

– Message Flow invokes a Web service to retrieve data or perform a
function (for example it can invoke a CICS Web service).

� Provide a Web services “front end” to an existing application (service-enables
indirectly the application).

– Message Flow called by Web services client invokes an MQ enabled
COBOL program and returns result to client.

S

Service
provider

IMS
DB2

S S

S
Service

consumer

S

S

SOAP / HTTPSOAP / HTTP

SOAP / HTTP

WebSphere Message Broker

Service
provider

CICS

Service
provider

CICS

SOAP / HTTP

Message flow

DB2 access

Service
provider

Service
consumer
 Chapter 6. Towards service integration and process integration 235

7331ch07.fm Draft Document for Review January 29, 2007 3:05 pm
� Route a Web services request (just as a proxy)

– Message Flow forwards client request to Service Provider based on
message content. Reply from Provider returned to flow and passed back
to client.

� Serve as Web services aggregator (consumer and business logic
implementation)

– Message Flow makes requests to other Web services and aggregates
their replies into a single response.

You can find more information about WebSphere ESB on z/OS at:

http://publib.boulder.ibm.com/infocenter/dmndhelp/v6rxmx/index.jsp?t
opic=/com.ibm.wsps.ovw.doc/welcome_wps_ovw.html

You can find more information about WebSphere Message Broker at:

http://publib.boulder.ibm.com/infocenter/dmndhelp/v6rxmx/index.jsp?t
opic=/com.ibm.websphere.wesb.doc/tasks/twesb_inst.html

6.3.2 Implementing the block “Advanced Services Adoption”

In this section we discuss the activities contained in the SOA implementation
block Advanced Services Adoption, and show how to implement them.

Use of a Web Service Gateway
We would like to have in our SOA infrastructure a point of control where all
service requests are coming in and get mapped to service providers. We would
also like to be extremely flexible, an this can be reached if the target location,
message format and transport protocol are shielded from the service consumer.

Some usages for a Web Services Gateway are:

� Externalize an internal Web service (making it available for external service
consumers, and in the process, secure it).

� Internalize an external Web service (making an external Web service
accessible to service consumers as if were an internal Web service)

� Protocol transformation.

� SOAP Proxy service.

� Process abstraction: the service invocation approach must be flexible enough
to cope with events such as switching frequently between external providers
of a similar service without requiring changes to the application.

� Increased flexibility: a service provider needs the flexibility to change the
deployment infrastructure without notifying all the service requestors.
236 SOA Architcture Handbook for z/OS

Draft Document for Review January 29, 2007 3:05 pm 7331ch07.fm
� Single deployment of a Web service to multiple end point listeners.

� Configurable intermediation through mediations.

� Authentication and authorization support (per service and/or operation) using
basic User ID/Password and SSL support.

The IBM Web Services Gateway is a runtime component that provides
configurable mapping between Web service providers and requesters. Services
defined with WSDL can be mapped to available end point listeners. The IBM
Web Services Gateway is included with IBM WebSphere Application Server
Network Deployment V6. It is based on the Service Integrated Bus (SIB) and is
tightly integrated with WebSphere Application Server.

The basic components of the Web Services Gateway are:

� End point listeners that define the entry-points into the gateway and carry the
Web service request and response through the gateway.

� Mediations that are used to intercept service invocations which come into the
gateway and act upon the services.

� Services that are described with the help of a Web Services Description
Language (WSDL) document.

� UDDI references to manage the publishing of an exposed Web service to a
private or public UDDI registry.

Figure Figure 6-8 shows the basic components of the Web Services Gateway.

Figure 6-8 Basic structure of the Web Services Gateway

The entry point to the gateway is defined by an End Point Listener (EPL). An
EPL is a piece of software that defines the protocol you can use to access the
gateway. The incoming message is assessed on arrival through the EPL to
determine which service is required. Each service (defined in a WSDL
document) has to be bound to one or more EPLs. One or more mediations can
be bound to a service for manipulating both request and response messages.

Gateway service

End point
listener

Implementation
WSDL definition

Web Services Gateway

WSIF
provider

Target
application

Client
(service

consumer)

mediation

mediation

Interface WSDL
definition

S

Inbound
gateway

Outbound
gateway
 Chapter 6. Towards service integration and process integration 237

7331ch07.fm Draft Document for Review January 29, 2007 3:05 pm
The WSDL service definition specifies the provider service interface and
implementation used to access the target service. A request to the Web Services
Gateway arrives through an EPL and is translated into an internal representation
of the service. With the help of mediations for the request, a request can be
logged, intercepted, or generally manipulated. After this an appropriate provider
is used to communicate with the target service. The provider in the gateway acts
as a client for the target Web service. The response from the target service flows
along the exact same path back to the provider.

The process of deploying a target service into a gateway EPL generates two
different external WSDL files; an implementation definition and an interface
definition. These new WSDL files can be exported for use by client applications,
and are the externalization of the service capabilities offered by the internal
target service. The implementation WSDL definition is used to simplify the
connection process for a client, particularly when dynamic invocation is being
used. Having obtained the implementation definition, the client can then access
the WSDL interface definition produced by gateway, which provides full
information about the target service (as presented externally by the gateway).
The IBM Web Services Gateway uses the Web Services Invocation Framework
(WSIF) API from Apache to decouple invocation from deployment within the Web
Services Gateway.

The following features can be configured at runtime:

� End Point Listeners (EPLs)

� JAX-RPC handlers

� SIBus mediations

� Gateway and proxy services

� UDDI lookup and publishing

� WAS and Web services security

For more information please consult the following:

� “An introduction to Web Services Gateway”, by Chandra Venkatapathy and
Simon Holdsworth

http://www-128.ibm.com/developerworks/library/ws-gateway

� Web services gateway at InfoCenter

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r0/index.jsp?t
opic=/com.ibm.websphere.pmc.express.doc/sibuswsgw/index.html

Complex aggregation of services across multiple applications
Aggregation is the ability to decompose a service request into multiple outbound
requests and re-assemble the replies to send an aggregated response.
238 SOA Architcture Handbook for z/OS

Draft Document for Review January 29, 2007 3:05 pm 7331ch07.fm
Aggregation is supported in the WebSphere Message Broker through built-in
nodes (AggregateControl, AggregateReply, AggregateRequest, MQGet).

Currently aggregation is not supported in WebSphere ESB.

Aggregation of Web services is supported through the BPEL runtime in
WebSphere Process Server. A discussion of the powerful control flow features
offered by BPEL is out of the scope of this book. The implementation of the BPEL
language in the WebSphere Process Server is described in WebSphere Process
Server V6.0 Business Process Choreographer Programming Model, at:

http://www-306.ibm.com/software/integration/wps/library/infocenter/

For more information please consult:

� “Business Process Choreography in WebSphere: Combining the power of
BPEL and J2EE”, by M. Kloppmann et al., at

http://researchweb.watson.ibm.com/journal/sj/432/kloppmann.pdf

Transactional capabilities
We will discuss now the transactional capabilities in the WebSphere Message
Broker and in the WebSphere Process Server.

WebSphere Message Broker supports transactional message flows. The
Transaction property can be set for specific nodes, with different consequences.
The Transaction property can be set to:

� Automatic - means any updates, deletions, and additions performed by the
node are committed or rolled back when the message flow processing
completes. If the message flow completes successfully, all changes are
committed. If the message flow does not complete successfully, all changes
are rolled back. In order to coordinate all processing done by the message
flow we select this value.

� Commit - the action taken depends on the system to which the message flow
has been deployed. On distributed systems, any work that has been done to
this data source in this message flow to date, including any actions taken in
this node, is committed regardless of the subsequent success or failure of the
message flow. On z/OS, actions taken in this node only are committed
regardless of the subsequent success or failure of the message flow. Any
actions taken before this node under automatic transactionality are not
committed, but remain within a unit of work and might either be committed or
rolled back depending on the success of the message flow

There are a number of nodes where we can set the Transaction property. Among
them are: Compute Node, Database Node, DataDelete Node, DataInsert Node,
MQInput Node, MQOutput Node, MQReplay Node, JMSInput Node, JMSOutput Node.
 Chapter 6. Towards service integration and process integration 239

7331ch07.fm Draft Document for Review January 29, 2007 3:05 pm
For WebSphere Message Broker on z/OS transactions are always globally
coordinated (that means the property coordinatedTransaction is always on).
Coordination is provided by Resource Recovery Services (RRS).

WebSphere Process Server supports transactional process flows. The
interaction between a service client and a service is governed in the runtime by
service qualifiers. Service qualifiers are quality of service specifications that
define a set of communication characteristics required by an application (like,
among others, transaction management and security level). An application
communicates its quality of service needs to the runtime environment by
specifying service qualifiers (as metadata to the service). Quality of Service
qualifiers can be specified on a SCA reference, interfaces and implementation.
WebSphere Process Server processes rely upon the underlying WebSphere
Application Server capabilities for transaction, security, and workload
management. For business processes, WebSphere Process Server supports
transactions involving multiple resource managers using the two-phase commit
process to ensure atomic, consistent, isolated, and durable (ACID) properties.
This capability is available for both short-running flows (single transaction) and
long-running flows (multiple transactions). Inside a business process multiple
steps can be grouped into one transaction by modifying transaction boundaries
in WebSphere Integration Developer.

6.4 Stage 3 - “process integration”

We have just finished the two stages that encompass :service enablement” and
“service integration”. Figure 6-9 on page 241 shows the activities done and the
new pieces added to the SOA infrastructure.
240 SOA Architcture Handbook for z/OS

Draft Document for Review January 29, 2007 3:05 pm 7331ch07.fm
Figure 6-9 End of the “service integration” stage

Our architecture is shown in Figure 6-10 on page 242. It is now time to take
advantage of the SOA-enabled services and of the architecture that enable their
transparent communication, start aligning IT services to the business and start
creating new business processes. But first, what is process integration? One
definition might be the following: process integration is the creation and
management of the logic that links applications and services together to
implement a business function.

Enterprise Service Bus exploitation
Enable integration of applications and business

processes across the enterprise

Introduce routing and transformation capabilities

Introduce more advanced security and mediation

Use message brokering and ESB

Implement portal exploitation and page aggregation

Added to infrastructure

WebSphere ESB or WebSphere
Message Broker or both

WebSphere Portal

Activate Web Services Gateway
Advanced Services Adoption

Use Services Gateway

Introduce more complex aggregations of services
exposed across multiple applications

Include transactional semantics.
 Chapter 6. Towards service integration and process integration 241

7331ch07.fm Draft Document for Review January 29, 2007 3:05 pm
Figure 6-10 Status after the second stage of “Service Integration”

6.4.1 Implementing the block “Business Services Exploitation”

In the following sections we will discuss the implementation of the building blocks
associated to process integration.

Implement service-oriented integration of business functions
One possibility was shown in Figure 6-7 on page 235, with message flows
functioning as service providers. In this example a business service was created
using existing “primitive” services (with some business logic located in CICS,
IMS, and with some data access from DB2). Considering the many number of
nodes of different types made available by WebSphere Message Broker (e.g.
Java Compute Node, JMS Nodes, CICS Node, Database Node, HTTP node and
many File Nodes) we have a flexible way of creating business services.

Another possibility is to use the decomposition tools (such as WebSphere Studio
Asset Analyzer) to identify pieces of the existing applications that fit the service
definition, and chain them together in message flows, thus creating business
services.

Yet, another possibility is to use process choreography and orchestration tools
and technologies to link services into composite applications, fully aligned with
the business; this option is possible when installing the WebSphere Process
Server and using WebSphere Integration Developer (WID). The functionality of

IBM Software Group

Service Service Service Service

Service ServiceService Service

Enterprise Service Bus

We have positioned some processes inside ESB (message flows and nodes, aggregated
message flows, message flows as service providers)

Dynamic binding of the service to the ESB through service registry

Service Integration stage –Advanced Services adoption

Service Service Service Service

Service ServiceService Service

Enterprise Service Bus

aggregation

transactions

Service
registry
242 SOA Architcture Handbook for z/OS

Draft Document for Review January 29, 2007 3:05 pm 7331ch07.fm
the WebSphere Process Server will be described in the section “6.4.2,
“Implementing the block “ Business Process Orchestration”” on page 244 “.

Expose course grained business services
Using either WebSphere Message Broker or WebSphere Process Server we can
create new business services (either completely new or a combination with
existing services). From a business point of view it makes sense to model most
processes as course grained services, which happens to correspond with the
slight technological advantage they enjoy over the fine grained services (less
calls, less network traffic, less object marshalling/demarschalling).

Implement policy-based business services
Policies are simply sets of “if-then” business decisions that can be simply
expressed and can be used by several applications in an enterprise.

The idea behind this activity is to increase the agility of the application by
separating the business rules from the application. This “decoupling” allows easy
changes in the behavior of the application, through changes in the business
rules.

One possibility is to use the ESB and place the policies inside a message flow
(for example as a Java node). The other option is to implement the policies
through WebSphere Process Server. In the WebSphere Process Sever, business
rules are assembled into Business Rules groups. They are exposed in the
runtime as an SCA component. The SCA component can be accessed by
multiple processes.

Implement provisioning and lifecycle
Provisioning and lifecycle refer to the activities necessary for the management
of a Web service starting with the development phase, over deployment, usage
and concluding with retirement. These activities are strongly related to the
service registry and repository. The registry and repository contains information
that is used during the whole lifeycle of the service. IBM’s product for this
functionality is the WebSphere Service Registry and Repository (WSRR), and the
strategy is that for all phases of the service lifecycle IBM products will be
integrating with WSRR.

During the lifecycle of the service there are several interaction points with WSRR.
During creation of the service there is a need for the developer to know what
services are available and how to call them. Therefore his development tools
need integrated access to WSRR (repository function).
 Chapter 6. Towards service integration and process integration 243

7331ch07.fm Draft Document for Review January 29, 2007 3:05 pm
At runtime the mediation components of the ESB (both WebSphere ESB and
WebSphere Message Broker) will need interaction to WSRR in order to perform
service selection, enforce service policies, etc. (registry function).

Figure 6-11 shows how different components of the IBM SOA reference
architecture (and from all lifecycle parts) interact with WSRR.

Figure 6-11 SOA service lifecycle and interactions with WSRR

6.4.2 Implementing the block “ Business Process Orchestration”

As defined, the implementation block “Business Process Orchestration” contains
the following activities:

� Introducing business process modeling

� Beginning process choreography

� Implementing external business rules

� Introducing flow and event management

� Implementing compensation

All these activities can be implemented on z/OS through the installation of
WebSphere Process Server (as runtime), WebSphere Business Modeler and
WebSphere Integration Developer (both as development tools) and WebSphere
Business Monitor as a management tool. To begin with, let’s look at the structure
of the WebSphere Process Server.

Service
Development

Lifecycle WebSphere Service Registry and Repository

Service Endpoint
Registries /

Repositories

Change and
Release

Management

Operational
Efficiency and

Resilience

Runtime Integration

Model Build

Assemble

Deploy

Mediate Bind

Manage

Discover

Test
244 SOA Architcture Handbook for z/OS

Draft Document for Review January 29, 2007 3:05 pm 7331ch07.fm
Figure 6-12 Architectural model of WebSphere Process Server

WebSphere Process Server is implemented on top of WebSphere Application
Server and WebSphere ESB. WAS provides the J2EE and Web services runtime
and WebSphere ESB provides the ESB functionality. The SOA core layer in
WebSphere Process Server consists of:

� Service Component Architecture (SCA)
� Business Objects
� Common Event Infrastructure (CEI)

On top of this SOA core layer lies the service components and supporting
services layers. WebSphere Process Server implements a number of
components and services that can be used in an integration solution. In the
service components layer, you find the following:

� Business processes

The business process component in WebSphere Process Server implements
a WS-BPEL compliant process engine. WS-BPEL is a language that allows
specifying the behavior of business services:

– behavior between Web services
– behavior as Web service

� Human tasks

Human tasks in WebSphere Process Server are stand-alone components
which can be used to assign work to employees.

� Business state machines

A business state machine provides a way of modeling a business process by
representing them based on states and events.

WebSphere Application Server for z/OS (J2EE Runtime)

SOA Core Service Component
Architecture

Business
Objects

Common Event
Infrastructure

Interface
Maps

Business
Object
Maps

Relation-
ships

Dynamic
Service

Selection

Dynamic
Service

Selection

Supporting
Services

Mediation
(ESB)

Mediation
(ESB)

Human
Tasks

Human
Tasks

Business
State

Machines

Business
State

Machines

Business
Rules

Business
Rules

Business
Processes
Business

Processes
Service
Components
 Chapter 6. Towards service integration and process integration 245

7331ch07.fm Draft Document for Review January 29, 2007 3:05 pm
� Business rules

Business rules are a means of implementing and enforcing business policies
through externalizing business functions. This enables dynamic changes of a
business process.

These components can use the features of a number of supporting services in
WebSphere Process Server. Most of these can be classified as some form of
transformation. There are a number of transformation challenges when
connecting components and external services, each of which is being addressed
by a component of WebSphere Process Server:

� Interface maps

Very often interfaces of existing components match semantically but not
syntactically. Interface maps allow the invocation of these components by
translating these calls. Additionally business object maps can be used to
translate the actual business object parameters of a service invocation.

� Business object maps

A business object map is used to translate one type of business object into
another type of business object.

� Relationships

In business integration scenarios it is often necessary to access the same
data in various backend systems for example an ERP system and a CRM
system. A common problem for keeping business objects in sync is that
different backend systems use different keys to represent the same objects.
The relationship service in WebSphere Process Server can be used to
establish relationship instances between objects in these disparate backend
systems. These relationships are accessed from a business object map when
translating one business object format into another.

� Dynamic service selection

A selector component allows dynamic selection and invocation of different
services, which all share the same interface.

� Mediation

This component is inherited from WebSphere Enterprise Service Bus.

The primary development tool for WebSphere Process Server is WebSphere
Integration Developer (WID). This is the same tool used for WebSphere
Enterprise Service Bus development tasks.

You can find more information about IBM WebSphere Process Server V6 at:

http://www.ibm.com/software/integration/wps/
246 SOA Architcture Handbook for z/OS

Draft Document for Review January 29, 2007 3:05 pm 7331ch07.fm
The important facts are that both WebSphere Process Server and WebSphere
ESB share the same programming model, based on data representation as
Service Data Objects (SDO), invocation based on Service Component
Architecture (SCA), and composition based on BPEL+ extensions. The focus of
the programming model is on assembling solutions rather than implementation
details. A number of adapters is available to enable communication with EIS and
non SOA-enabled legacy systems. Supported by tooling, it is clear that the two
products deliver, based on the common basis, a coherent part of the SOA
infrastructure. Since WebSphere ESB is the routing and transformation basis for
WPS it is obvious that the SCA components will communicate without problems
with SOA-enabled services reachable over WESB. These are mostly Web
services, so if the business process requires just these, we can stay with the
combination WPS and WMB.

Figure 6-13 shows the connectivity available to SCA components running in
WebSphere Process Server and WebSphere ESB.

Figure 6-13 SCA connectivity to other components and services

The WebSphere adapters supported by the SCA components are:

� WebSphere Flat File adapter
� WebSphere JDBC Adapter
� WebSphere PeopleSoft Enterprise adapter
� WebSphere Siebel® Business adapter
� WebSphere SAP adapter

A more interesting aspect is the integration between WebSphere Process Server
and WebSphere Message Broker. WMB can consume WPS XML generated

JMS Export JMS Import

SCA Export

WS Export

EIS Export

SCA Export

WS Export

SCA Import

WS Import

SLSB Import

EIS Import

SCA Module B

Web Service App

SCA Import

WS Import

JMS Application

WBI Adapter

WebSphere Adapter

Web Service App

SCA Module A

JMS App

WBI Adapter

WebSphere Adapter

J2EE Application

SCA Module A

J2EE Application

JCAJCA
 Chapter 6. Towards service integration and process integration 247

7331ch07.fm Draft Document for Review January 29, 2007 3:05 pm
messages and can generate WPS consumable messages, using several
interfaces. The integration is shown in Figure 6-14.

Figure 6-14 Integration between WebSphere Process Server and WebSphere Message
Broker

Since WebSphere Message Broker supports a wealth of interfaces for non- Web
services applications, we see the need to present some scenarios where each
product applies its strength to implement the solution.

The first scenario is shown in Figure 6-15 on page 249. In this scenario an
WebSphere MQ service consumer accesses WMB, where the necessary routing
and transformation takes place (the strengths of WMB). When a human
interaction is necessary the message flow reaches for WPS, which does its part.
In this scenario WebSphere Message Broker controls the flow.

WebSphere Process
Server

WebSphere Message
Broker

JMS (preferred)

SOAP / JMS

SOAP / HTTP

BPEL
activity

BPEL
activity

BPEL
activity

Message
Flow

Message
Flow

Message
Flow

HTTP
Node

JMS
Node

BPEL API Java
Node

WebSphere Application
Server (SIB)

MQ NodeMQ
248 SOA Architcture Handbook for z/OS

Draft Document for Review January 29, 2007 3:05 pm 7331ch07.fm
Figure 6-15 WebSphere Message Broker controlling the flow

The second scenario, shown in Figure 6-16, presents a situation where the
WebSphere Message Broker has to handle multiple transports, transformations,
message splitting (which it can do very well), and then start a process with
several threads. This is better done by WebSphere Process Server.

Figure 6-16 WMB gives control to WPS for simultaneous processes

The last scenario, shown in Figure 6-17 on page 250, describes a situation
where WPS executes the business process, choreographs the Web services,
and drives WMB to access messaging applications. WMB then brokers the reply
message to WPS, which continues to run the process.

WebSphere Message
Broker

BPEL
activity

BPEL
activity

BPEL
activity

Message
Flow

Service consumer
MQ NodeMQ

WebSphere Process
Server

Node

Human
 interaction

WebSphere Message
Broker

BPEL
activity

BPEL
activity

BPEL
activity

Message
Flow

MQ Node
MQ

WebSphere Process
Server

HTTP
NodeHTTP

Node BPEL
activity

Parallel processing
 Chapter 6. Towards service integration and process integration 249

7331ch07.fm Draft Document for Review January 29, 2007 3:05 pm
Figure 6-17 WPS as choreographer of services, using WMB for access to messaging
application

We can generally recommend to use WebSphere Process Server when the
business process:

� orchestrates multiple processes
� needs human intervention
� has parallel processes in the same flow
� makes almost exclusive use of Web services (WPS is strong in accessing

Web services)

Use WebSphere Message Broker when the business process:

� needs extensive routing and transformations
� uses stored procedures
� accesses applications needing industry-standard format
� needs high performance
� has multiple transports in the same flow
� has complex publish / subscribe topology

Out of these recommendations situations may arise where both products are
necessary.

WebSphere Message
Broker

BPEL
activity 2

BPEL
activity 3

BPEL
activity 1

Message
Flow

MQ Node

WebSphere Process
Server

HTTP
Node

SOAP/HTTP

Service
 consumer

MQ
application

Web service

Request / reply

Web service
250 SOA Architcture Handbook for z/OS

Draft Document for Review January 29, 2007 3:05 pm 7331ch07.fm
6.4.3 Implementing the block “Discovery and Dynamic Binding

In the following sections we will decsribe how to implement the “Discovery and
Dynamic Binding” block.

Locate services exposed on the ESB and introduce “consumer
discovers supplier” patterns

These activities can be enabled by installing a service registry. IBM offers the
product WebSphere Service Registry and Repository (WSRR). A discussion of the
general role played by WSRR in the lifecycle of the service (assembly,
deployment, runtime, management) has taken place in the previous section.

We are here interested in the activities mentioned above, therefore we will limit
our discussion to the way in which WSRR supports us in implementing them.

The location of the service is one of the most important activities, because it
touches the base of SOA (loose coupling). We want our service consumers to
know as less as possible about the services they will call; the best situation is
when they only know the name of the service they require.

Let’s see how some of the IBM SOA runtime products interact at runtime with the
WSRR. The major user of WSRR at runtime is the ESB, in the form of the
mediation component. We will refer to the mediation component as “the
requestor”. Several actions have to be taken care of:

� Service endpoint selection - this means finding, based on the requestor’s
metadata, the candidate services, applying an algorithm to select one, and
routing the request to the service (see Figure 6-18 on page 252).

� Service availability management - this means deciding what to do in case a
service is not available, selecting alternatives, etc..

� Policy enforcement - this means delivering to the requestor the policy
information (the contract between consumer and provider), so the
enforcement takes place.
 Chapter 6. Towards service integration and process integration 251

7331ch07.fm Draft Document for Review January 29, 2007 3:05 pm
Figure 6-18 WSRR runtime selection and invocation interactions

The integration with WebSphere ESB is done through:

� a new pre-built mediation “Endpoint Lookup”

� optional caching (to reduce interaction with WSRR)

� dynamic endpoint selection

The integration with WebSphere Message Broker is done through:

� new mediation capabilities (Nodes), for example SRRetrieveITservice
(retrieves PortType) and SRRetrieveEntity (retrieves metadata)

� optional caching

Implement dynamic invocation of service and dynamic
consumption of WSDL

We describe in the following section a set of activities which, each one in turn,
help to refine the loose coupling of the SOA infrastructure, by eliminating even
further dependencies between service consumer and service provider.

Web Services Invocation Framework (WSIF)

There are two ways of binding to Web services: static and dynamic.

� In the static process, the binding is done at design time. The service
consumer obtains a service interface and implementation description through
a proprietary channel from the service provider (by e-mail, for example), and

Dynamic selectionDynamic selection

Mediation

ESB

Service

Service Registry Service Registry
& Repository& Repository

Retrieve requester
service definition3

Match
requester/
provider
terms

Select
provider

5

1. A Message is received by an ESB.
2. The ESB invokes a selection mediation.
3. The Mediation retrieves the service description for the requested operation from the Business

Service Repository.
4. The Mediation retrieves service descriptions for candidate providers
5. The Mediation executes its matching algorithm to identify the provider service that is the best fit
6. The inbound message is transformed and routed to the selected endpoint.

Retrieve candidate
provider service
definitions
and terms

4

1

Message

2

Message

Transform & Route6

Message
252 SOA Architcture Handbook for z/OS

Draft Document for Review January 29, 2007 3:05 pm 7331ch07.fm
stores it in a local configuration file. So this means the service consumer is
dependent upon the WSDL stored in its configuration.

� The dynamic binding occurs at runtime. While the client application is
running, it dynamically locates the service using a UDDI registry and then
dynamically binds to it using WSDL and SOAP. Therefore there is no
dependence here between service consumer and the WSDL.

We do not want to tie the client code to a particular protocol implementation,
because it is inflexible, restricts possible connectivity, and is hard to change.
Therefore we are interested in a process that allows the invoking of Web
services, independent of the format of the service or the transport protocol
through which it is invoked.

The Apache Web Services Invocation Framework (WSIF) provides a standard
Java API to invoke services, no matter how or where the service is provided, as
long it is described in WSDL. WSIF enables the developer to move away from the
native APIs of the underlying service, and interact with representations of the
services instead. WSIF is WSDL-driven and provides a uniform interface to
invoke services using WSDL documents. So, if a SOAP service you are using
becomes available as an EJB, for example, you can change to RMI/IIOP by just
modifying the WSDL service description, without needing to modify your service
consumers.

This API is used in WebSphere Integration Developer and in the WebSphere
Application Server runtime to construct and manipulate services defined in
WSDL documents. The architecture allows new bindings to be added at runtime.
WSIF has the following advantages:

� Multiple bindings can be offered for services, and bindings can be decided at
runtime.

� Switching protocols, location, and so forth, without having to recompile the
client code.

� A stubless and totally dynamic invocation of a Web service.

WSIF is an intermediary between service consumer and service provider, and as
such shields the consumer from the possible bindings of the provider

WebSphere V6 on z/OS includes a UDDI Version 3 Registry that can be used to
obtain this dynamic behavior.

For more information on this subject please consult following documents:

� Dynamic Discovery and Invocation of Web services, by Damian Hagge
http://www-128.ibm.com/developerworks/webservices/library/ws-udax.ht
ml?t=egrL296&p=invocationws#author
 Chapter 6. Towards service integration and process integration 253

7331ch07.fm Draft Document for Review January 29, 2007 3:05 pm
The Selector function inside WebSphere Process Server
Dynamic selection functionality is available also in WPS.

The selector objective is:

� Determine dynamically which implementation to invoke based on some
defined set of criteria. The predefined implementation uses dates, but it is
possible to specify other selection criteria via XML configuration. Custom
selection algorithms can be plugged into the selector component by manual
coding.

� Decouple the client application from a specific target implementation. Change
of target does not require change of client.

� Allows SCA target implementations to be added to the selector dynamically
without requiring a restart of the application or server.

6.4.4 The end of the journey

At the end of stage three, there will be an infrastructure and application
architecture that provides process integration. Figure Figure 6-19 on page 255
shows the activities done and the IBM products (with specific features) that have
been activated.
254 SOA Architcture Handbook for z/OS

Draft Document for Review January 29, 2007 3:05 pm 7331ch07.fm
Figure 6-19 Stages from Service Integration to Process Integration.

Business Services Exploitation

Implement service oriented integration of
business functions.
Expose course grained business services.
Implement provisioning and lifecycle.
Implement policy-based business services

Business Process Orchestration

Introduce business process modeling
Begin process choreography
Implement external business rules
Introduce flow and event management
Implement compensation

Discovery and Dynamic Binding

Locating services exposed on the ESB
Use a service registry for discovery
Introduce “consumer discovers supplier”
patterns
Implement dynamic consumption of WSDL
Implement dynamic Invocation of services

Already in infrastructure

WebSphere ESB or
WebSphere Message

Broker or both

WebSphere Portal

Activate Web Services
Gateway

Added to infrastructure

WebSphere Process Server
 Chapter 6. Towards service integration and process integration 255

7331ch07.fm Draft Document for Review January 29, 2007 3:05 pm
256 SOA Architcture Handbook for z/OS

Draft Document for Review January 29, 2007 3:05 pm 7331ch08.fm
Chapter 7. SOA governance on z/OS

The z/OS mainframe environment is well-known for the high Qualities of Service
(QoS) that it delivers - security, scalability, reliability, high-availability, and other
characteristics. These traits are present, in part, because of the design of the
hardware, operating system, and middleware. But another key reason for the
mainframe’s high level of QoS is the rigor of process, procedure, and governance
that surrounds the mainframe in most customers’ installations. For example, high
system reliability and availability is achieved not just through the ability for
hardware components such as the central processors to fail over, or because
z/OS can trigger a functional recovery routine when an application attempts to
overlay storage. Reliability and availability also stems from change control,
rigorous testing, application standards, and other controls that help prevent
planned and unplanned outages.

The practice of managing policy and maintaining controls over the platform and
architecture is often referred to as governance. The word originates from the
word “govern,” a word that can imply varying degrees of control. One definition of
“govern” is “to exercise a directing or restraining influence over; guide,” which is
not a very daunting definition. However, another definition states: “to exercise
continuous sovereign authority over,” which has a slightly more dictatorial
implication. And this is one of the keys to governance - to control without
imposing so much restraint that it constricts the functioning of the organization.
Some “urban legends” about the mainframe imply that the mainframe is too
inflexible or slow to respond to change. In fact, the mainframe is no different from
any other platform with respect to flexibility or responsiveness. But the

7

© Copyright IBM Corp. 2006. All rights reserved. 257

7331ch08.fm Draft Document for Review January 29, 2007 3:05 pm
governance policies of the enterprise often are at issue, and in many cases those
restrictions in question are for good reason and greatly contribute to the superior
qualities of service of the mainframe.

Since SOA implementations are, by nature, a loosely-coupled collection of
services and infrastructure, a strong governance process is necessary to
balance the near-anarchy of an unconstrained proliferation of services and
service providers by using governance practices to help keep things in order. The
fact that SOA uses separation of concerns to abstract business logic from
infrastructure logic (communication, mediation of data and connectivity, etc.)
means there will likely be a more complex infrastructure of application artifacts,
middleware and servers needed to run it. More components means more
complexity, and more complexity means more controls to prevent that complexity
from becoming an issue. In his paper titled “Introduction to SOA Governance,”
Bobby Woolf states:

Governance becomes more important in SOA than in general IT. In SOA,
service consumers and service providers run in different processes, are
developed and managed by different departments, and require a lot of
coordination to work together successfully. For SOA to succeed, multiple
applications need to share common services, which means they need to
coordinate on making those services common and reusable. These are
governance issues, and they're much more complex than in the days of
monolithic applications or even in the days of reusable code and
components.1

The complication that stems from the sharing of services across the enterprise
makes governance even more important than ever, especially considering the
cross-organizational nature of the deployed services and infrastructure.

1 http://www-128.ibm.com/developerworks/library/ar-servgov/
258 SOA Architcture Handbook for z/OS

http://www-128.ibm.com/developerworks/library/ar-servgov/

Draft Document for Review January 29, 2007 3:05 pm 7331ch08.fm
7.1 What gets governed?

SOA governance concentrates on policies applied to the service lifecycle. There
are many other areas of governance that are not specific to SOA, such as
enterprise I/T standards, problem and change management, etc. Some of these
will be impacted by the SOA implementation - I/T governance and SOA
governance are not mutually exclusive. SOA governance focuses on the design,
development, and maintenance of shared business services. One of the key
aspects of this is the agreements that are forged between the service providers
and service consumers. Key to these agreements are the people involved and
the process for governing the service lifecycle.

Woolf2 states that, in contrast with I/T governance, SOA governance:

� acts as an extension of IT governance that focuses on the life cycle of
services to ensure the business value of SOA

� determines who should monitor, define, and authorize changes to existing
services within an enterprise

7.2 Who governs?

An enterprise that has the resources for a formalized organization may form a
“center of excellence” or similar team to create the governance policies and
procedures. A board of knowledgeable individuals may act as the guiding body
and serve to mediate agreements between the interested parties, including the
service provider organizations and the development teams who are consumers
of the services.

Governance is largely a political function. It does not determine designs,
infrastructures and other technical issues - it determines how those decisions are
made. IBM’s SOA Governance Lifecycle3 demonstrates how SOA governance is
not a technology issue. This Lifecycle consists of:

Plan establish the governance need

Define design the governance approach

Enable put the governance model in action

Measure monitor and manage the governance processes

2 Ibid
3 http://www-306.ibm.com/software/solutions/soa/gov/lifecycle/
 Chapter 7. SOA governance on z/OS 259

http://www-306.ibm.com/software/solutions/soa/gov/lifecycle/

7331ch08.fm Draft Document for Review January 29, 2007 3:05 pm
None of these are directly relevant to technology. The SOA Governance Lifecycle
defines how to establish and maintain the governance framework, not the SOA
itself.

In the mainframe environment, infrastructure, applications, and the decisions and
policies that surround them tend to be highly centralized. Applications are
(mostly) not distributed and do not cross organizational boundaries. There are
well-defined groups of architects, developers and administrators responsible for
the various aspects of the system. While this centralized paradigm does not
eliminate the need for governance, it does make it easier. However, the
introduction of business-aligned services that are, at least in part, developed by
business areas, and the use of distributed infrastructure for components such as
an enterprise service bus or process server, all contribute to a more distributed
architecture with many more people and teams with an interest in how policy is
made.

7.3 Aspects of SOA governance

SOA governance consists of a number of different areas of emphasis. We will
examine several of them in terms of how they impact an SOA implementation
using resources on the mainframe. The key aspects of SOA governance are:

� Definition

� Development lifecycle

� Versioning

� Migration

� Registries

� Message model

� Monitoring

� Ownership

� Testing

� Security

We now will review a few of these aspects that have particular relevance in the
development or hosting of services and infrastructure on the mainframe.

7.3.1 Service definition

Definition of the service is one of the most fundamental functions in the service
lifecycle. The architect/developer must determine the service’s functionality,
260 SOA Architcture Handbook for z/OS

Draft Document for Review January 29, 2007 3:05 pm 7331ch08.fm
scope and granularity, and the composition of the service interface. Since a
service is to be composed of business logic and is considered a “repeatable
business task,” this must be taken into account during the service design - how is
the business logic to be partitioned in a way that maximizes the future reusability
of the service?

Reflecting back upon prior sections of this book and the mainframe SOA
migration patterns and strategies, it is apparent that the “bottom-up” approach of
reusing mainframe assets may constrain the service definition task. Since most
SOA implementations are not “green field” projects (ie. there are existing assets
to be reused), there must be at least some bottom-up and meet-in-the-middle
analysis and development done to harvest the existing assets. While many
existing mainframe transactions were designed to perform “repeatable business
tasks” at the user interface level (for example, functions invoked via CICS
menus), the internal structure of these transactions often does not match the
business granularity presented on the surface.

As the architect and developer develop a service definition, a detailed knowledge
of the asset inventory that might feed that service is critical. The asset discovery
tools discussed in 4.2.2, “Discovery and refactoring tools used in the Assemble
stage” on page 110, including WebSphere Studio Asset Analyzer and Asset
Transformation Workbench, become important in the service definition process
by providing a detailed view of the application artifacts and their structure. This
can help determine the suitability of the asset for reuse.

7.3.2 Service versioning and migration

Once a service is created, it is not likely to stay static forever. Business
requirements and rules will change, and modifications to the service will be
necessary. If an adequate governance structure is in place that keeps track of
service providers and consumers, it may be possible to gauge the impact of
change on a service. Service definition (see above) should be done in a way that
defines an interface that can “flex” with the service with time.

The z/OS environment has a long history of attention to backward compatibility
and avoidance of impact of change. Consideration of the impact of service
migration is closely related to the change control practices that are common in
most mainframe customers. Versioning of services should be considered when
designing a SOA governance model. In fact, service versioning is one of the
livelier areas of discussion amongst architects today!4

Service migration may become an especially significant issue for migrated z/OS
transactions that are reused using the Adapter-provided service interface pattern

4 A simple Google search for “SOA versioning” returned hundreds of hits, many of which discuss the
various difficulties in version control of SOA-based services
 Chapter 7. SOA governance on z/OS 261

7331ch08.fm Draft Document for Review January 29, 2007 3:05 pm
and the Improve transition approach. Tools such as the CICS Service Flow
Feature or WebSphere Host Access Transformation Services depend upon the
3270 user interface to execute the existing host transactions. Over the years,
such techniques have been succeptable to breakage due to change at the user
interface. However, now that organizations have started providing the UI via a
Web browser, the 3270 interface has become significantly less volatile than in
years and decades past.

Theoretically, loose coupling of services from caller to provider and the
infrastructure to support it (Enterprise Service Bus, service registry) can help
insulate change. The ESB can route service requests to the appropriate caller
and/or service, and the registry provides the appropriate endpoint address,
depending upon the version requested (or a default).

7.3.3 Service registries

Many developers, when faced with the need to create a new function for an
application, will simply build from scratch. Why? Sometimes the urge to create
from scratch stems from a personality style, it may result from a development
organization suffering from the “Not Invented Here” syndrome (ie. “it can’t be
good if our organization didn’t create it...”), or there may simply be a lack of
information on the pre-existence of other assets that meet the requirements for
that function. In the latter case, a service registry can ease the job of finding and
reusing existing services.

A service registry can increase the service reuse in an organization by providing
a searchable directory of services that advertises the existence of service
functions. The registry provides information on the service interface and how to
invoke it, and it provides details on the location of the service for design-time or
run-time resolution. As mentioned in the prior section, a service registry can help
insulate the service caller from changes in a service or new versions that have
been provisioned.

IBM’s registry solution
In September, 2006, IBM announced the WebSphere Service Registry and
Repository (WSRR).

WSRR is the master metadata repository for service descriptions, including
traditional Web services implementing WSDL interfaces with SOAP/HTTP
bindings as well as a broad range of SOA services that can be described using
WSDL, XSD and WS-Policy decorations. As the integration point for service
metadata, WSRR establishes a central point for finding and managing service
metadata acquired from a number of sources, including service application
deployments and other service metadata & endpoint registries and repositories,
262 SOA Architcture Handbook for z/OS

Draft Document for Review January 29, 2007 3:05 pm 7331ch08.fm
such as UDDI. With WSRR, service visibility is controlled, service versions are
managed, proposed changes are analyzed and communicated, usage is
monitored and other parts of the SOA foundation can access service metadata
with the confidence that they have found the copy of record. WSRR focuses on a
minimalist set of metadata-describing capabilities, requirements and semantics
of services. It interacts and federates with other metadata stores that support
specific phases of the SOA life-cycle and capture more detailed information
about services relevant in those life-cycle phases; examples of specialized
repositories include a reusable asset manager in development or configuration
management database in service management.

The product architecture of WSRR is shown in Figure 7-1

Figure 7-1 WebSphere Service Registry and Repository architecture

WSRR fulfills the requirements of a SOA service registry by providing the
following major functions:

� Service publishing and inquiry
Publish, retrieve, query and manage documents which describe services (a
metadata repository). Documents may be XML, WSDL, XSD, WS-Policy, or
other formats.

� Service registry
Register services, so that information about the service, including endpoint
location, interface description, etc. can be resolved at design or run time.

RDB

WebSphere Application Server

Content Models

Operating Platform

Programming
Interfaces Java SOAP

User
Interface Web Eclipse

Plug-in

Registry & Repository
Create

Retrieve
Update
Delete
Query

Validation

NotificationClassifications

Access Control

Events GeneratedGovernance

Lifecycle

Transition
Validate
Notify

Impact Analysis
Audit

Validators

External
Systems

3rd Party WPS ESB MB UDDI

Events

Generated

Extensions &
Integrations

Admin

Import / Export
Configure

JMX
 Chapter 7. SOA governance on z/OS 263

7331ch08.fm Draft Document for Review January 29, 2007 3:05 pm
� Event notification
Changes to WSRR content can trigger notifications to subscribers (JMS
pub/sub or e-mail notification)

� Governance model
WSRR facilitates governance of entities within the repository by directing the
governance process by use of state machines that define the entity’s lifecycle.

� Programming interfaces
Both Java and SOAP interfaces are provided for CRUD operations against the
metadata repository.

� User interfaces
Web and Eclipse-based user interfaces are provided. The Eclipse interface is
intended for use by developers and analysts; the web interface can be used
for metadata management and governance.

Figure 7-2 shows an overview of the WSRR from a solution perspective.

Figure 7-2 Solution view of WSRR

The WebSphere Service Registry and Repository plays a key role in completing
the vision of SOA as a loosely-coupled abstraction of business logic and
infrastructure. Without a registry to resolve service endpoints at runtime, it is
difficult to completely disconnect the service consumer and provider, as the
endpoint infrastructure must still somehow be reflected in the services. Also,
WSRR helps to mitigate the other difficulties in SOA governance, including
version control, migration, and tracking the development lifecycle of services.

For mainframe-based services that have been migrated using the SOA migration
techniques described earlier, the WSRR provides the place to store the
descriptions of the services, such as the WSDL and other XML artifacts. WSRR
will provide the run-time registry for the ESB to locate and resolve service

Service
Development

Lifecycle WebSphere Service Registry and Repository

Service Endpoint
Registries /

Repositories

Change and
Release

Management

Operational
Efficiency and

Resilience

Runtime Integration

Model Build

Assemble

Deploy

Mediate Bind

Manage

Discover

Test
264 SOA Architcture Handbook for z/OS

Draft Document for Review January 29, 2007 3:05 pm 7331ch08.fm
endpoint addresses to fulfill the loose coupling requirement. And, while the z/OS
platform will provide the optimal levels of security, reliability, etc. for the registry,
WSRR can be hosted on any platform supported by the product, even if the
services are located on z/OS.

7.3.4 Service monitoring

The introduction of SOA, loose coupling of services, and new infrastructure
components including ESBs, process servers, and service registries poses new
problems of complexity in mainframe environments that formerly consisted
simply of z/OS running CICS transactions. To maintain the levels of QoS to which
mainframe customers are accustomed, new, rigorous monitoring practices are
needed. There are several areas of monitoring that are important:

Business monitoring
The traditional concept of “monitoring” encompasses the monitoring of I/T
components - CPU utilization, I/O saturation, response time, etc. SOA’s close
ties between I/T and business dictate a slightly different approach to monitoring.
Business people need access to metrics that show the state of business
functions - a “business dashboard” is a common implementation that permits the
business analyst to monitor various measurements of business operation. For
example, the insurance executive may wish to monitor the number of claims
being processed in a period of time by the claim processing center. Or a bank
manager might want to monitor the flow of funds through his branch.

The decoupling of business logic from I/T logic makes it easier to monitor
business-related metrics. Composite applications and workflows can be
instrumented to produce statistics that are fed into business monitoring tools, and
those statistics can be provided back to the modeling tools used to create the
workflows and processes to further improvements. IBM provides the WebSphere
Business Monitor to give business people the ability to monitor such business
metrics and key performance indicators.

I/T monitoring
The complexity of the SOA infrastructure dictates the need for new, end-to-end
monitoring tools that can show not only the status and performance of services
on their respective transaction servers, but also the availability and performance
of the end-to-end process and/or transaction. End-to-end performance
monitoring has been a challenge for many years, but the complexity of a
SOA-based application that spans many application, database, ESB, process,
directory and security servers is far greater than a CICS 3270 transaction!

Service level agreements (SLAs) are critical to the proper governance of a SOA
implementation. Without an SLA, a customer may not be able to adequately
 Chapter 7. SOA governance on z/OS 265

7331ch08.fm Draft Document for Review January 29, 2007 3:05 pm
provide sufficient levels of performance or scalability, as there is no benchmark
by which to gauge success. How good is “good enough?” How fast is “fast
enough?” Without a SLA, an I/T organization may be on a never-ending quest for
faster/better transaction performance.

IBM’s Tivoli software brand provides many monitoring tools that help the I/T staff
measure and manage an SOA-based application, provide an end-to-end picture
of the application, and determine if SLAs are being met. The Tivoli Composite
Application Manager for WebSphere and the Tivoli Composite Application
Manager for SOA both aid the end-to-end monitoring requirement. The
WebSphere monitor concentrates on the WebSphere Application Server and can
give information about services executing there, including those that invoke
back-end services on CICS or IMS, per the Adapter-provided service interface
pattern. The SOA monitor gives a higher-level view of the SOA service at a web
services protocol level.

Accounting
One of the sometimes-controversial aspects of I/T governance is resource
accounting (in some contexts referred to as “chargeback”). Organizations usually
must account for resource usage, and sometimes charge the users of resources
for the consumption of those resources. In a loosely-coupled SOA
implementation, it may not always be possible to accurately account for the
consumption of resources. The loose-coupling may not always maintain the
identity of the service consumer from end to end. The need to maintain this
identity can drive the architectural decisions of what migration pattern and
approach to use to move a mainframe application to SOA.

Mainframe z/OS customers have always had the ability to collect vast amounts of
data to use for resource accounting. The z/OS System Management Facility
(SMF) is an inherent part of the operating system and can measure virtually any
activity that occurs under z/OS. SMF records are created by all of the major IBM
transaction managers (CICS, IMS, WebSphere, WebSphere MQ), by the
database managers, and most other users of the system. The SMF repository
can be used to report on system performance, utilization, and resource
consumption - at a very granular level. Organizations wishing to charge back for
resource consumption can use SMF to create the billing needed. However, the
architect must design the SOA implementation so that SMF data is accurately
gathered to reflect the “true user” of the service. Some SOA enablement
mechanisms may not easily transmit the identity of the service caller without
custom coding. For example, J2EE Connector Architecture connections can
maintain user identity from a web application server caller back into CICS or IMS,
but a WebSphere MQ connection may require extra code to populate the
appropriate message headers.
266 SOA Architcture Handbook for z/OS

Draft Document for Review January 29, 2007 3:05 pm 7331ch10.fm
Chapter 8. SOA and z/OS QoS

Most of the content in this book is really about application architecture matters.
We have had many discussions about how to structure SOA applications, how
services should integrate and what software products to use based on their
features. We have said very little in all the decision making about QoS factors. In
fact, many IT decisions are based on QoS impact rather than just functional
matters. We should ask questions such as:

� Does a certain service interface solution techniqe perform?

� What is the the throughput of a certain ESB solution?

� Can we propagate security context in our service call using a certain solution
technique?

� If a service is not available, is there automatically an alternate available?

� Does our service provider scale?

Most of us think about performance, scalability, reliability, integrity and perhaps
one or two others in terms of QoS. The full list of QoS is longer, though. z/OS is
traditionally strong in Quality of Service and it seems that SOA requires more
QoS than traditional IT environments. The main reason for this is because in a
properly implemented SOA assets will be increasingly shared and reused.

This chapter talks about the QoS aspects in the implementation of an SOA on
z/OS, or better, how to make use of them, as QoS is already there as part of the

8

© Copyright IBM Corp. 2006. All rights reserved. 267

7331ch10.fm Draft Document for Review January 29, 2007 3:05 pm
System z hardware and z/OS operating system. Focus will be on availability,
scalability, security and workload management. We will also talk about TCO.

The chapter is organized as follows:

� 8.1, “Overview” on page 269 is an overview section.

� 8.2, “Quality of Service on the System z platform and inside z/OS” on
page 271 discusses the QoS inherently part of the System z hardware and
z/OS operating system.

� 8.3, “Quality of Service of the SOA building blocks” on page 276 talks about
the QoS delivered as part of the SOA enablement products available.

� 8.4, “Quality of service of the SOA architecture” on page 304 discusses QoS
aspects delivered by the SOA architecture itself.

� In 8.6, “Managing QoS with SOA on z/OS” on page 319 we have a brief
discussion on management of QoS on z/OS.

� 8.5, “QoS and our implementation scenarios” on page 304 contains a
discussion on how the QoS discussed apply to our implementation scenarios
and to what extent they play a role in making decisions in terms of solution
techniques.

� We conclude this chapter in 8.7, “Conclusion” on page 320.
268 SOA Architcture Handbook for z/OS

Draft Document for Review January 29, 2007 3:05 pm 7331ch10.fm
8.1 Overview

Quality of service (QoS) is a major theme in today’s IT environments. The Quality
of Service of the platform and of the software products running on that platform
are an important area in the decision processes of IT departments. It is important
to know how an SOA architecture can benefit from the strong QoS of the z/OS
platform, but also each solution technique as discussed in Chapter 5, “SOA
implementation scenarios” on page 129 has different QoS characteristics. The
QoS aspects of a certain solution technique may be more improtant than the
functions and features.

A service (in the sense defined by SOA) has, besides the functionality it
implements, qualities that describe how it delivers the business function. Those
qualities are, for example:

� the reliability of the service
� the conditions for reachability (availability)
� the security cover under which it acts
� the capacity and performance that it delivers
� the transactional capabilities

The SOA environment implemented on z/OS receives the Quality of Service
features from several areas:

� The System z hardware and the physical system infrastructure on which the
software products (middleware) are positioned.

� The z/OS operating system with its built-in subsystems, such as Workload
Manager (WLM), Resource Recovery Services (RRS) and solutions such as
Parallel Sysplex and Geographically Dispersed Parallel Sysplex (GDPS).

� The features of the software products that build the underlying SOA
infrastructure (that means the products from the portfolio supplied by IBM,
described in the previous chapters).

� The inherent characteristics and features of the SOA architecture itself, such
as the standards being used.

These areas can be viewed as layers, which are positioned one over the other
(layer 1 at the basis):

Layer 1 The hardware and operating system layer.

Layer 2 The layer constructed with the products that implement
the SOA building blocks.

Layer 3 The layer built by positioning the application over the SOA
building blocks.
 Chapter 8. SOA and z/OS QoS 269

7331ch10.fm Draft Document for Review January 29, 2007 3:05 pm
Figure 8-1 shows this layered structure.

Figure 8-1 SOA QoS features - layer structure

We think that this layer positioning and the way in which the upper layers exploit
the functionality of the lower layers increase the QoS of the SOA solutions
positioned on z/OS. We describe in the following sections how this “exploitation”
is implemented.The QoS features discussed in the next sections are scalability,
availability, reliability, security, Total Cost of Ownership (TCO).

Attention: Note that in this book we focus on the QoS “scalability”,
“availability”, “reliability”, “security” and “Total Cost of Ownership”. There are
more QoS, such as maintainability, manageability and so on, but leave those
out of the scope of the dicussion.

SOA products

System z hardware and
z/OS

SOA architecturescalability availability reliability security TCO

exploitation of the QoS features in the lower layer

service

service

serviceservice

service

exploitation of the QoS features in the SOA products

QoS features
inherent in the architecture

WAS WPS

DB2

WESB, WMB
Portal

CICS,IMS Tivoli
270 SOA Architcture Handbook for z/OS

Draft Document for Review January 29, 2007 3:05 pm 7331ch10.fm
8.2 Quality of Service on the System z platform and
inside z/OS

The Quality of Service features of the System z hardware platform in
combination with the the z/OS operating system are well and in detail described
in several redbooks and other publications (for example, IBM System z Strength
and Values, SG24-7333). However, we will summarize the most important QoS in
the next sections.

8.2.1 Scalability

Scalability is the ability to accept increased workloads without degradation of
service. In reality this means that an infrastructure needs to be capable to easily
find the additional resources needed for this increased workload, and without
running into bottlenecks. Resources here means anything needed to run the
workload, such as memory, CPU, DASD, address spaces, threads and so on.
Resources can be at a “hard” level, such as real memory and CPU, for instance,
or at a “soft” level, such as threads, address spaces or virtual memory. “Hard”
resources will, of course have a given limit (i.e. the number of CPUs installed in
the system), but “soft” resource maximums are configurable and tunable to
accept peak workloads.

The main function available in z/OS to manage the workload in accordance with
the given resources is the workload management. The function of the workload
management is very simple: keep the machine busy while staying within the
agreed service levels. The key features that implement this are:

� Dynamic allocation of I/O, CPU between LPARs.

� A sophisticated implementation of the z/OS Workload Manager (WLM).

8.2.2 Availability

Availability comes in many flavors. The level of availability should depend on the
bsuiness requirements, but we already know that in a full blown SOA availability
becomes more important, because of the increased reuse of IT assets. System z
and z/OS are designed for High Availability (HA), without having to add any
additional software products. It is “part of the box”. Note, however, that some
levels of availability may require multiple LPARs, or even multiple footprints. With
System z and z/OS, “silver”, “gold” and “platinum” levels of availability can be
achieved. Very simply, without getting into too much technical detail, the levels
would be as follows:

Silver One footprint (machine) with multiple LPARs (system
images), allowing for non-disruptive maintenance at the
 Chapter 8. SOA and z/OS QoS 271

7331ch10.fm Draft Document for Review January 29, 2007 3:05 pm
operating system level, planned and unplanned outages
of an LPAR and intelligent workload balancing between
LPARs dynamically. All of this with an already high level of
availability.

Gold Multiple footprints in the same location with one or
multiple LPARs, allowing for non-disruptive maintenance
at both the hardware and operating system level, planned
and unplanned outages of an LPAR or an entire machine
and dynamic intelligent workload balancing between
LPARs and machines. All of this with a very high level of
availability.

Platinum Multiple footprints in mulitiple sites, allowing for
non-disruptive maintenance at both the hardware and
operating system level, planned and unplanned outages
of an LPAR, an entire machine or an entire site and
dynamic intelligent workload balancing between LPARs
and machines. This would deliver extremely (continuous)
high availability at the hardware and operating system
level.

The most important technology available in the System z hardware and the z/OS
operating system that enforce the high availability functionality is:

� Inclusion of self-healing attributes in the hardware in order to prevent
downtime caused by system crashes. The operating system takes advantage
of the self-healing attributes of the hardware, and extends them by adding
functions such as recovery services for all operating system code, address
space isolation, and storage key protection.

� Elimination of planned outages through concurrent hardware changes.

� Elimination of planned outages through Enhanced Driver Maintenance. This
allows upgrades of the Licensed Internal Code for processors of all types
(CPs, IFLs, ICFs, zAAPs), memory, and I/O adapters that are transparent to
the application.

� On demand capacity upgrades (CUoD and CIU are processes that allow a
temporary or permanent upgrade in the CPU, memory, I/O ports).

� Removal of Single Point Of Failure (SPOF) through the Parallel Sysplex
architecture (non-disruptive attachment and removal of LPARs, servers,
non-disruptively installation and maintenance of hardware and software).
Parallel Sysplex is discussed a bit more in detail in “Parallel Sysplex” on
page 273.

� Business continuity solutions like Geograpically Dispersed Parallel Sysplex
(GDPS) (with its variations GDPS/PPRC synchronous mirroring, GDPS/XRC
asynchronous mirroring, GDPS/Global mirroring with asynchronous PPRC
272 SOA Architcture Handbook for z/OS

Draft Document for Review January 29, 2007 3:05 pm 7331ch10.fm
replication technology). GDPS is discussed a bit more in detail in
“Geographically Dispersed Parallel Sysplex (GDPS)” on page 274.

Parallel Sysplex
Centralizing all components on a single system does not imply that mainframe
computing is limited to one single box or to one single operating system, on the
contrary. Mainframes have the capability of being partitioned in up to 60 logical
partitions (LPARs) and each one has the ability to run one of the five System z
operating systems. In that case, there are management tools and resource
sharing at a box level, and at operating system level.

Figure 8-2 shows a simpliefied view of the concept.

Figure 8-2 Parallel Sysplex - simplified view

The z/OS operating system provides the capability of creating a cluster of up to
32 systems named Parallel Sysplex, where a system can be a full box or just an
LPAR. Most computing platforms today have clustering capabilities, but Parallel
Sysplex is a completely different kind of clustering solution because its capability
of sharing every resource between the elements in the cluster and the capability
to dynamically reconfigure, add or remove resources.

z/OS allows all members in a cluster to share all data, even up to the record level.
All other cluster implementations, at best, allow to partition data amongst the
elements of the cluster, and each system can access just the data attached to it.

12
1

2

3

4

5
6

7

8

9

10

11

Coupling Technology
(CFCC)

Shared data

Sysplex Timer

FICON/ESCONSystem z

12
1

2

3

4

5

6

7

8

9

10

11

System z
 Chapter 8. SOA and z/OS QoS 273

7331ch10.fm Draft Document for Review January 29, 2007 3:05 pm
Parallel Sysplex also provides significant network optimizations for
communication across its cluster members. Once a client request reaches the
Sysplex Distributor there is no more external network traffic required; all traffic
flows over the System z hardware. As a consequence, network latency is kept to
a minimum and typical network issues you normally see in a physical
de-centralized infrastructure, are inherently absent. Even when the Parallel
Sysplex is physically spread over several different boxes, the communication
between them flows over high speed fiber optic connections managed by the
Cross Coupling Facility (XCF), a specific protocol for those connections, with a
magnitude of GigaBytes of transfer rate. Within a physical machine,
communication between z/OS images is accomplished through memory to
memory and there is no network protocol faster than that.

Parallel Sysplex is key in achieving high availability in any of the SOA building
blocks discussed later in this chapter. It is the technology that makes it possible
to run the same workload on different system images, while using the same data
image (provided DB2 data sharing is enabled too).

Geographically Dispersed Parallel Sysplex (GDPS)
For higher availability and disaster recovery purposes, a Parallel Sysplex can be
configured in a Geographically Dispersed Parallel Sysplex (GDPS) mode. There
are two GDPS modes:

� GDPS/PPRC, a configuration where we have a Parallel Sysplex distributed
over two sites, connected together up to 100 km, with data synchronized and
shared continuously. One site (part of the sysplex) is acting as a primary, and
the second site is acting as a secondary, in stand-by mode. GDPS controls
and automates a full swap to the backup site in case of failures.

� The second mode of operation for GDPS is GDPS/XRC, where distance
between sites can be more than 100 km, theoretically without limitation. In
GDPS/XRC the sysplex does not span both sites, but instead a full system
image is swapped to the alternate site in an emergency situation.

Both modes use the so called HiperSwap capability which provide the ability to
activate replicated data in the disaster recovery site without application outage.

8.2.3 Reliability

Reliability is another Quality of Service with a broad meaning. In practice
reliability is associated with the ability to run programs with transactional
attributes and make sure data is not becoming corrupted. In the broad sense,
however, reliability is also depending on the level of security on the system and
other QoS.
274 SOA Architcture Handbook for z/OS

Draft Document for Review January 29, 2007 3:05 pm 7331ch10.fm
The System z hardware provides built-in hardware redundancy (exemplified in
continuos enhancements in hardware). and the z/OS operating system provides
Resource Recovery Service (RRS) for global transactions with two-phase commit.
RRS manages resources in a way that they are registered in a global transaction
only when they attempt to make changes to resources under its control.

Besides the hardware and the operating system, CICS, IMS and DB2 have their
own built-in features for reliability ensuring two-phase commit, integrity of data
and backward and forward logging mechanisms for recovery purposes.

Resource Recovery Services (RRS)

8.2.4 Security

Security is important and again very broad. Security encompasses many things,
such as authentication, authorization, encryption, auditing and so on.

The System z platform, the z/OS operating system and its security server
subsystem provides a full range of security features:

� Dedicated security server (z/OS security server, including RACF, LDAP
server, PKI infrastructure and much more).

� Support for a variety of encryption standards to keep current with industry and
government security regulations - all inside the z/OS cryptographic services.

� End-to-end data protection that helps keep data uncorrupted and
uncompromised. The generic product used is IBM Encryption Facility for
z/OS, encompassing IBM Encryption Facility for z/OS, the Encryption Facility
Client and the DFSMSdss™ Encryption Feature.

� Integration of security with the network with built-in technology resistant to
hackers.

� Protection of the data in the network (encryption techniques, VPNs).

� Support for protecting of system resources and data from unauthorized
access (TCP application support for RACF).

� Protection of the system from the network (IP packet filtering, traffic
regulation, intrusion detection services).

� Managed access to critical data through Multiple Level Security (MLS
integrated in RACF and used by different subsystems).

Author Comment: ALK todo: description on RRS
 Chapter 8. SOA and z/OS QoS 275

7331ch10.fm Draft Document for Review January 29, 2007 3:05 pm
8.2.5 Total Cost of Ownership (TCO)

In this book we will stay away from whether the TCO of System z is good or bad,
but mention the features that have been provided over time to lower the TCO. It is
IBM’s direction to keep on improving the TCO of the System z platform. The TCO
improvements provided are:

� Simplification and automation of the processes running on z/OS (features in
the area of systems management, reducing personnel costs through
automation).

� Introducing features in the standard delivery (for example making security
features standard - to be compared with a car where security features are
implemented as standard, not like add-ons).

� Simplify the disaster recovery implementation and therefore reducing the cost
necessary to put it in place.

� Implement sophisticated workload management techniques in order to use
very efficiently (means cost effective) the resources on the z/OS platform.

� Changing the commercial rules, changing the licences and the way to price
the CPU usage. The z/OS platforms provides multiple hardware and software
pricing options that will suit different requirements.

� Offload CPU loads to specialty processors, which are priced differently to
make it more attractive to run new workloads on the platform.

� Capacity on demand offerings.

8.3 Quality of Service of the SOA building blocks

In this section we review the software products used in the SOA building blocks
and describe the Quality of Service provided by these products. The section is
organized in the following way: we consider the QoS features and show, for each
of them, how the products that represent the SOA building blocks implement
these features.

Note, however, that we will not describe transaction servers and DB2 (although in
scope); we recommend the details in the other existing documentation and
redbooks.

8.3.1 Scalability

Scalability is a very important Quality of Service. It is present in all products
running on z/OS and reflected mostly in the way in which these products
implement workload management.
276 SOA Architcture Handbook for z/OS

Draft Document for Review January 29, 2007 3:05 pm 7331ch10.fm
In the following sections we will discuss how this workload management is
supported in each of the products playing an important role in SOA on z/OS.

We will elaborate on the following products:

� WebSphere Application Server as the foundation infrastructure for
WebSphere ESB and WebSphere Process Server (discussed in “WebSphere
Application Server and workload management” on page 277).

� WebSphere ESB and WebSphere Process Server (WPS) in “WebSphere
Process Server (WPS), WebSphere ESB, and workload management” on
page 282.

� WebSphere Message Broker (WMB) in “WebSphere Message Broker and
workload management” on page 282.

� WebSphere Portal in “WebSphere Portal and workload management” on
page 284.

WebSphere Application Server and workload management
We have several possibilities to scale using WebSphere Application Server on
z/OS: vertical scaling and horizontal scaling. We discuss first the vertical scaling.

As part of the vertical scaling process within a WAS server, the Workload
Manager will start as many servant regions as required (within imposed
restraints) to process the workload and meet the defined goals. If a given servant
is overloaded, it is temporarily bypassed in favor of less busy servers. If a servant
fails, other servants take over the work and the servant is recovered. When the
servants are no longer needed, they are automatically stopped.

Horizontal scaling is especially effective in environments that contain many
smaller, less powerful systems/nodes. Client requests that overwhelm a single
system can be distributed over several systems.

On the z/OS platform there are two wokload managers: zWLM and eWLM, which
cooperate in order to supply optimal workload management services:

� zWLM is the workload manager of z/OS and it has an operating system view
on the WebSphere Application Server.

� eWLM (enterprise WLM) is involved with application response monitoring,
and feeds information back to the zWLM.

The workload management is concerned with the optimal distribution of work
requests to the processes (on z/OS, address spaces). The work requests are, in
the case of WebSphere Application Server: HTTP requests, servlet requests,
messages, Web services and EJBs.

We discuss in the following sections two aspects:
 Chapter 8. SOA and z/OS QoS 277

7331ch10.fm Draft Document for Review January 29, 2007 3:05 pm
� classification of work requests

� distribution of work requests

Classification of work requests
Workload management in z/OS is based on the concept of grouping work into
service classes. The incoming work request is classified to a service class and
the WLM schedules the resources to complete the work request according to this
service class. Figure 8-3 on page 279 shows how WebSphere Application Server
work requests are classified into service classes.

The following components are illustrated in Figure 8-3 on page 279:

� Work qualifier
WebSphere Application Server for z/OS associates each work request with a
work qualifier that identifies a work request to the system.

� Classification rules
Classification rules associate a work request, as defined by its work identifier,
to a WLM service class.

� Service class
z/OS WLM organizes work into workloads and service classes. The service
class for a group of work defines the performance goal and business
importance.

� Performance goals
There are three kinds of performance goals: response time, execution velocity,
and discretionary. The response time goal indicates the response time goals
for individual transactions, the execution velocity goals are suitable for started
tasks or batch jobs, and the discretionary goals are for low priority work.

� Business importance of the work
The business importance for a service class defines how important it is to
achieve the performance goal for that service class. At runtime, the workload
management component manages workload distribution, and allocation of
resources to competing workloads. High priority workloads get guaranteed,
consistent results, for example, response time, throughput, etc.

A few software constructs inside WAS are used to manage, control and deliver
the classified work units to their respective servant adress spaces.

� Queuing services
The controller region is queueing work requests to workload management for
execution in servant address spaces; it listens for work requests and puts
them on the Workload Management queue. The Workload Management
component of z/OS dispatches the work to the servant region according to the
WLM policy specified by the work identifier.
278 SOA Architcture Handbook for z/OS

Draft Document for Review January 29, 2007 3:05 pm 7331ch10.fm
� Enclaves
Enclave services allow performance management of a transaction across
multiple address spaces and systems inside a Parallel Sysplex. The controller
region creates the enclave and associates the transaction to this classified
enclave. Then the transaction is queued, waiting to be served by an available
thread in a servant region.

� Application Environments
Application Environments allow WLM to start (or stop) servant address
spaces in order to meet transactions performance goals, as the workload
varies.

Figure 8-3 illustrates the flow from the WebSphere controller region, through
WLM, to the servant regions.

Figure 8-3 Workload management in WebSphere Application Server on z/OS

WebSphere Application Server can assign a Transaction Class (TC) to a work
item by using a Transaction Class mapping file for HTTP requests, or by using a
workload classification document for HTTP, IIOP, or MDB inbound requests.

� Transaction Class mapping file.
This file allows us to associate a set of URIs to a specific Transaction Class.
At execution time, WLM will use the Transaction Class to associate the work
request to a service class.

Servant region

Servant region

Servant region

Enclave
Serviceclass FAST

Enclave
Serviceclass SLOW

Enclave
Serviceclass DEFAULT

Controller

WLM Queues

Work requests

WebSphere Application Server on z/OS

Associate
work qualifier

Transaction class mapping file or
Workload classification document

Associate transaction class

WLM policy

Associate
Service class
 Chapter 8. SOA and z/OS QoS 279

7331ch10.fm Draft Document for Review January 29, 2007 3:05 pm
� Workload classification document.
This is a common .xml file for the classification of inbound HTTP, IIOP, and
MDB work. The InboundClassification element defines the type of work that
is to be classified by type of work specific child elements. The statement used
is:

<InboundClassification type="iiop | http | mdb"
schema_version="1.0"
default_transaction_class="value">

IIOP work can be, in a very flexible way, classified based on the following
J2EE application artifacts (specified through the iiop_classification_info
element.):

– Application name
This is the name of the application containing the EJBs. It is the display
name of the application, which is not necessarily the name of the .ear file
containing all the artifacts.

– Module name
This is the name of the EJB .jar file containing one or more EJBs (there
can be multiple EJB .jar files contained in an .ear file).

– Component name
This is the name of the EJB contained in a module (or EJB .jar) (there can
be one or more EJBs contained in an EJB .jar file).

– Method name
This is the name of a remote method on an EJB.

HTTP work can be classified based on the following J2EE application
artifacts:

– Virtual Host Name
This is the host name in the HTTP header to which the inbound request is
being sent.

– Port Number
This is the port on which the HTTP catcher is listening.

– URI (Uniform Resource Identifier)
This is the string that identifies the Web application.

Message Driven Beans can be associated to a transaction class. The
following are the filter elements that you can use for MDB classification:

– Listener Port (Endpoint)
– Message Selector (XML tags)

We see how that the classification of work units is very granular, because we
have a flexible way of classifying the work requests; having this granularity, WLM
is able to schedule appropriately the work units and to “fill the box”.
280 SOA Architcture Handbook for z/OS

Draft Document for Review January 29, 2007 3:05 pm 7331ch10.fm
Distribution of HTTP requests
Distribution of HTTP requests takes place through connection dispatching; we
describe a solution available on z/OS, without using any external technology.

Connection dispatching is the routing of TCP connections from a dispatching (or
distributing) node to a group of target servers. The dispatching node receives
data from the client and forwards it to the appropriate server, which can reply
directly to the client. All systems in this cluster provide information about their
workload to a dispatching entity, which is generally referred to as a distribution
manager. This manager is responsible for distributing connection requests from
clients to the target systems where the application servers are running. The
distribution is based on the current workload information collected by the
distribution manager.

The Sysplex Distributor is a state-of-the-art connection dispatching technology
that is used among z/OS IP servers. The dispatching entity in this solution is a
z/OS system in a Parallel Sysplex (called the distributing stack), and the target
servers are exclusively z/OS systems in the same Parallel Sysplex. With this
technique, the client sees a traditional TCP/IP connection with a server, not being
aware of the existence of the distribution manager.

Sysplex Distributor extends the notion of automatic Virtual IP Address (VIPA)
takeover to allow for load distribution among target servers in the sysplex. The
Sysplex Distributor is advertising ownership of some IP address by which a
particular service is known (called Distributed VIPA or DVIPA). The Sysplex
Distributor makes use of Workload Manager (WLM) and its ability to determine
server load. WLM informs the distributing stack of the target server loads so that
the distributing stack may make the most intelligent decision regarding where to
send incoming connection requests.

Additionally, Sysplex Distributor has the ability to specify certain policies in the
Policy Agent so that it may use QoS information from target stacks in addition to
the WLM server load. Further, these policies can specify which target stacks are
candidates for clients in particular subnetworks.

The connection routing technology of Sysplex Distributor allows a VIPA to move
nondisruptively to another stack.

The limitation of the solution is that the Sysplex Distributor does not support
affinity to a specific target host. The choice of the target is selected according to
WLM metrics, policies, and configurations and could possibly be a different target
than in the last request.

This solution works well with stateless applications. For applications that need to
keep state, the WebSphere plug-in should be the one in charge of dispatching
directly to the WebSphere servers.
 Chapter 8. SOA and z/OS QoS 281

7331ch10.fm Draft Document for Review January 29, 2007 3:05 pm
Distribution of servlet requests
The servlet requests are dispatched by the HTTP server plug-in to one of the
available application servers; the routing is server-weighted. These servers are
known to the HTTP server plug-in by the plugin_cfg.xml configuration list; this list
delivers information about the primary and backup servers, including their
weight.

Distribution of messages
Messages are distributed using the partitioned messaging destination feature,
that spreads the messages across multiple messaging engines.

Distribution of EJB requests
EJB requests are spread using a daemon which asks WLM on z/OS for a
recommended endpoint, then takes the decision and sends the EJB request to
the selected EJB container.

Full details (and alternative solutions) can be found in the Redbook “Architecting
High Availability using WebSphere V6 on z/OS”, SG24-6850. The same book
provides a detailed discussion of the theme of HTTP sessions (affinity, session
management, persistence).

WebSphere Message Broker and workload management
WebSphere Message Broker (WMB) supports goal-oriented resource allocation.
When a Message Broker V6 execution group address space starts, it can be
assigned to a Workload Manager (WLM) service class, which in turn is assigned
a specific goal during the WLM configuration process. The ability to assign WLM
service classes to message processing workload has two significant benefits:

� As work passes through subsystems that are WLM enabled, the service class
can be maintained (resources such as CPU and IO "follow" users’ work).

� WLM classification means that in the event of a resource constraint (at peak
time for example), high priority workloads can receive appropriate resource to
ensure that critical workloads are completed at the expense of less important
work.

WMB has the possibility of assigning threads to CPUs, assign message flows to
execution groups, or assigning message flows to multiple brokers deployed
within the sysplex broker domain. All these reconfiguration activities are dynamic.

WebSphere Process Server (WPS), WebSphere ESB, and workload management
WebSphere Process Server and WebSphere Enterprise Service Bus for z/OS
are built on top of WebSphere Application Server for z/OS. The information in the
previous section about WAS in relation to WLM is therefore relevant here,
282 SOA Architcture Handbook for z/OS

Draft Document for Review January 29, 2007 3:05 pm 7331ch10.fm
because WebSphere Process Server and WebSphere Enterprise Server Bus are
executing in the WebSphere Application Server address spaces.

Clustering can be employed to create a high availability Message Engine (ME)
for the WebSphere Process Server. The configuration has the following features:

� Provides for multiple Message Driven Beans to utilize a common queue and a
single persistent store.

� WLM decides which server will run the Message Engine.

� If the active Message Engine fails then the HA (High Availability) manager will
activate a new Message Engine on an available server.

� WLM routes the JMS clients to the currently active Message Engine.

In order to increase scalability the logical approach is to add more Message
Engines to the server cluster, and using the “JMS destination partitioning” to
partition the messages across the Messaging Engines in the cluster. This feature
can be used only for specific types of applications (those where cluster affinity
and stateful messages are not relevant).

As with WPS, topologies for WebSphere Enterprise Service Bus for z/OS are
mainly imposed by those of WebSphere Application Server for z/OS: sysplex and
server clustering are the main considerations when you need high availability.
Internally, messages passed through mediations in WebSphere Enterprise
Service Bus are persisted in the Service Integration Bus. These Service
Integration Buses are made out of Messaging Engines that live inside application
servers.

The configuration of Service Integration Buses is very flexible. You can have
individual Messaging Engines, or clusters containing multiple Messaging
Engines that can share workload, be highly available, or both.

The following options are available:

� Workload sharing configuration
Multiple Messaging Engines (one per application server) clustered together,
Message Engines are restricted to running in their application servers. The
last level of workload balancing provided by the WLM at servant level.

� High availability Message Engine configuration
Single Messaging Engine running in a cluster. It lives in more than one
application server so that there is failover to the rest of servers in the case of
maintenance or a system crash. If the cluster is horizontal and sysplex wide,
WLM policies for workload through the sysplex apply.

� High availability Messaging Engines with workload sharing
A combination of the two previous options. Multiple Messaging Engines
running in a cluster with Messaging Engines being able to failover to one or
 Chapter 8. SOA and z/OS QoS 283

7331ch10.fm Draft Document for Review January 29, 2007 3:05 pm
more application servers in the cluster. Both, local WLM policy for servants in
an application server and sysplex-wide policy for the cluster apply here.

A comprehensive discussion is out of the scope of this book. We can see that the
combination of WebSphere Application Server, WebSphere Process server and
WebSphere ESB provide high availability. For detailed information please consult
Redpaper “z/OS technical overview: WebSphere Process Server and
WebSphere Enterprise Bus”, REDP-4196.

WebSphere Portal and workload management
WebSphere Portal runs in WebSphere Application Server and inherits the
workload management support discussed in “WebSphere Application Server and
workload management” on page 277.

8.3.2 Availability

The level of availability provided by the SOA products is determined by the
clustering capabilities of the product itself and the fact whether the product
exploits Parallel Sysplex or not.

All the SOA products within our scope, including backend systems, such as
CICS, IMS and DB2 exploit Parallel Sysplex. Parallel Sysplex means that multiple
system images can be tied together and behave as one logical system. If one
LPAR drops out, the other LPARs take over the workload.

All the WebSphere products (Application Server, MQ, Message Broker, ESB,
Process Server and Portal) and CICS and IMS provide clustering techniques and
DB2 provides data sharing. Clustering means “cloning” of a server that can
process the same workload. This requires each “clone” to have the same
program logic deployed to it and have access to the same data.

We will now discuss in more detail the sysplex exploitation and clustering
capabilities per SOA product.

WebSphere Application Server
To exploit Parallel Sysplex with WebSphere Application Server in a meaningful
way and achieve full high availability, the following conditions must be met:

� A Parallel Sysplex must have been installed, with one or a duplicate Coupling
Facility (CF).

� DB2 data sharing must be enabled.

� WebSphere Application Server must be installed in a Network Deployment
(ND) topology.
284 SOA Architcture Handbook for z/OS

Draft Document for Review January 29, 2007 3:05 pm 7331ch10.fm
� Clustering must have been configured between servers on multiple LPARs.

The above would allow to run the same workloads on multiple servers in multiple
LPARs having access to the same data image.

WebSphere ESB/Websphere Process server
WebSphere ESB and WPS for z/OS can be installed and configured to run in a
WebSphere Application Server Network Deployment configuration. Being able to
run WESB and WPS workloads in a sysplex environment requires the same
prerequisites as mentioned in “WebSphere Application Server” on page 284.

WebSphere Message Broker
WebSphere Message Broker can also exploit the sysplex. The way in which
WMB exploits the sysplex is through WebSphere MQ shared queues. Input and
output requests can be persisted in those shared queues, which are stored in the
Coupling Facility (CF). All participating LPARs and the brokers running in those
LPARs will have access to the same queue image. If an LPAR o a broker in an
LPAR would drop out, other brokers on other LPARs can continue processing the
same workloads.

Workload scaling is also facilitated by the sysplex. Message flows can be scaled
across the sysplex by deploying to multiple brokers within the sysplex broker
domain. This reconfiguration process is dynamic and does not require a restart.
Similarly, brokers, execution groups, and message flow instances can be
removed as needed.

WebSphere Portal
WebSphere Portal for z/OS can be installed in such a way that it takes advantage
of the underlying WebSphere Application Server implementation. The Portal can
be installed in a WebSphere Application Server cluster for either horizontal
(availability) or vertical (scalability) situations.

8.3.3 Reliability

We have seen in 8.2.3, “Reliability” on page 274 that the System z hardware and
z/OS operating system provide for underlying infrastructure for reliability. One of
the important aspects of reliability is the ability to run transactions and apply
bulletproof recovery mechanisms in case of failures. Even though the hardware
and the OS provide a robust infrastructure, reliability can only be achieved if the
SOA core products within our scope exploit transaction and recovery
mechanisms themselves too. As we can expect, all IBM software products in the
core SOA reference architecture and the traditional backend systems are
designed from the beginning to fully support transactionality and recoverability.
 Chapter 8. SOA and z/OS QoS 285

7331ch10.fm Draft Document for Review January 29, 2007 3:05 pm
Again, we will discuss for each SOA core product the capabilities. We leave the
backend systems, such as CICS, IMS and DB2 out of scope, but you can
assume that there is nothing to worry about in those systems.

WebSphere Application Server
WebSphere Application Server is a transaction manager that supports the
coordination of resource managers through the XAResource interface and
participates in distributed global transactions with transaction managers that
support the CORBA Object Transaction Service (OTS) protocol (for example
application servers) or the Web Service Atomic Transaction protocol. For global
transactions in which both WAS and another resource manager take place and
which are both run on the same LPAR, Resource Recovery Services (RRS) is
exploited to coordinate transactions.

WebSphere Application Server handles transactions with three main
components:

� A transaction manager that supports the enlistment of recoverable
XAResources and ensures that each such resource is driven to a consistent
outcome, either at the end of a transaction, or after a failure and restart of the
application server.

� A container in which the J2EE application runs. The container manages the
enlistment of XAResources on behalf of the application when the application
performs updates to transactional resource managers (such as databases).
Optionally, the container can control the demarcation of transactions for
enterprise beans that are configured for container-managed transactions.

� An API (UserTransaction) that is available to bean-managed enterprise
beans and servlets that enables such application components to control the
demarcation of their own transactions.

WebSphere has administration tools enabling granular setting of the transaction
properties; these properties are saved in the configuration files.

The transaction support delivered for access to backend systems (EIS,
databases, transaction servers) is implemented through the J2EE Connector
Architecture (JCA). In this case the supplier of the backend system delivers a
JCA resource adapter with the following characteristics:

� Provides JCA-compliant connectivity between J2EE components and an EIS.

� Plugs into an application server.

� Collaborates with the application server to provide services, such as
connection pooling, transaction, and security services. JCA defines the
following set of system-level contracts between an application server and EIS:
286 SOA Architcture Handbook for z/OS

Draft Document for Review January 29, 2007 3:05 pm 7331ch10.fm
– A connection management contract lets an application server pool connect
to an underlying EIS, and lets application components connect to an EIS.
This leads to a scalable application environment that can support a large
number of clients requiring access to EISs.

– A transaction management contract between the application server
transaction manager and an EIS supports transactional access to EIS
resource managers. This contract lets an application server use a
transaction manager to manage transactions across multiple resource
managers. This contract also supports transactions that are managed
internally to an EIS resource manager without the necessity of involving an
external transaction manager.

– A security contract enables a secure access to an EIS. This contract
provides support for a secure application environment, reducing security
threats to the EIS and protecting valuable information resources managed
by the EIS. The resource adapter implements the EIS-side of these
system-level contracts.

� Implements the Common Client Interface (CCI) for EIS access. The CCI
defines a standard client API through which a J2EE component accesses the
EIS (through the JCA resource adapter). This simplifies writing code to
connect to an EIS. The resource adapter provides connectivity between the
EIS and the enterprise application via the CCI.

� Implements the standard Service Provider Interface (SPI). The SPI integrates
the transaction, security, and connection management facilities of an
application server (JCA Connection Manager) with those of a transactional
resource manager.

To show a single example, let us look at the implementation for DB2 access.
WebSphere application server on z/OS implements a resource adapter as shown
(for DB2 access) in Figure 8-4 on page 288.
 Chapter 8. SOA and z/OS QoS 287

7331ch10.fm Draft Document for Review January 29, 2007 3:05 pm
Figure 8-4 Resource adapter in J2EE connection architecture

A detailed description of the transactional capabilities that are available when
connecting to backend systems (CICS, IMS, DB2) can be found in the redbook
“WebSphere z/OS connectivity architectural choices”, SG24-6365. This book
describes how transactions can encompass EJBs and resources available under
the control of other transaction managers.

WebSphere Message Broker
WebSphere Message Broker supports transactional message flows. RRS is
used for context management and commitment control between resource
managers if necessary. Figure 8-5 on page 289 shows a complex example of a
transactional message flow that requires such a coordinator.
288 SOA Architcture Handbook for z/OS

Draft Document for Review January 29, 2007 3:05 pm 7331ch10.fm
Figure 8-5 Example of transactional flow and coordination in WebSphere Message Broker

WebSphere Process Server
WebSphere Process Server takes advantage of the underlying z/OS RRS
service. It offers support for transactions involving multiple resource managers
using the two-phase commit process to ensure ACID properties. This capability
is available for both short-running processes (single transaction) and
long-running processes (multiple transactions). Multiple steps of a business
process can be grouped into one transaction by modifying transaction
boundaries in WebSphere Integration Developer.

Because not all service invocations support two-phase-commit transactions,
WebSphere Process Server also includes recovery capabilities. If a failure
occurs in the middle of running an integration application, the server detects it
and allows an administrator to manage the failed event from the failed event
manager.

SCA transactions are also supported. SCA presents all elements of business
transactions – access to Web services, Enterprise Information System (EIS)

Message flow
coordinatedTransaction=Yes or No

Native Context
Transaction

DataUpdate
node

MQOutput
node

MQInput
node
transactionMode=
Yes (or Automatic)

transactionMode=
Automatic

transactionMode=
Yes (or Automatic)

DataInsert
node

transactionMode
=Commit

non-transactional

Private Context

Resource Recovery Services

Resource Manager
WMQ

Resource Manager
DB2

begin global
transaction
ATRBEG

begin global
transaction
ATRBEG

commit global
transaction
SRRCMIT

*

commit node
transaction
SqlTransact

private
context
SqlExecute

* *

*

COMMIT

global UOW

local UOW

Transaction Manager
WMQ

commit global
transaction
MQCMIT
 Chapter 8. SOA and z/OS QoS 289

7331ch10.fm Draft Document for Review January 29, 2007 3:05 pm
service assets, business rules, workflows, databases and so on – in a
service-oriented way.

WebSphere Enterprise Service Bus
WebSphere ESB takes also advantage of the underlying z/OS RRS service. This
helps implementing transactional properties in the mediations. You can configure
a mediation handler to run within a global transaction. A global transaction is
required when:

� Mediating and routing messages must be coordinated into a single
transaction.

� Several mediation handlers in a mediation handler list must be coordinated
into a single transaction.

Setting the global transaction property ensures transactional integrity between a
mediation that accesses the resources owned by other resource managers, and
the messaging engine. A global transaction encompasses all the mediation
operations that are run within the bus for the duration of the mediation. The
global transaction ends when the mediation completes its processing. If a
mediation transaction rolls back, all transactional changes also roll back. When
the transaction rolls back, the mediated message remains on the pre-mediated
part of the bus destination and becomes eligible to be mediated again. The
redelivery count assigned to a message increments each time a mediation
transaction rolls back. If the redelivery count exceeds the limit configured for the
bus destination, the message is sent to the exception destination.

8.3.4 Security

The introduction of SOA brings with it additional considerations in terms of
security. The concept of SOA itself, with its principle of loosely coupled and
abstracted services means identity validation of both consumers and providers is
harder to manage. Any application plugged into an SOA architecture is likely to
have different identity mechanisms and security policies. Users will most likely
have different privileges for different applications, and thus they will need to be
authenticated for each of the applications that are used via the SOA framework.
In addition we have to take care of the communication between the
loosely-coupled elements of the new applications.

Our objectives are:

� To build an architecture that allows end-to-end identity management, namely
one that is able to determine access rights for every application and user
involved.

� In this context, use secure connection protocols and security features to
enable data confidentiality and integrity.
290 SOA Architcture Handbook for z/OS

Draft Document for Review January 29, 2007 3:05 pm 7331ch10.fm
� Client (service requester) authentication and authorization (via LDAP and/or

Let use look at Figure 8-6 showing a diagram we have used earlier in this book,
but this time with some security interaction points. In such an architecture with
quite some integration a proper security design becomes important.

Figure 8-6 Example of security interaction points in a SOA architecture - WMB, WAS, MQ, backend
transaction servers and DB2

As we said, we must introduce secure protocols and identify and authorize the
requesters at specific points in the architecture. There are a lot of options
available. For example, for the authorization of the service requestors, the
security interaction point might be placed, depending on the architecture
implemented, either in the Web Services gateway (see Figure 8-7 on page 292),
or in the WebSphere ESB (see Figure 8-8 on page 292).

Enterprise Service Bus
(WebSphere Message Broker)

Service requester

CICS IMS TM DB2

WebSphere
MQ

WebSphere
Application Server

SOAP
(HTTP or JMS)

SOAP
(HTTP or JMS)

CICS EXCI
(z/OS Broker only)

SOAP
(HTTP or JMS)

JDBC

J2EE Connector
Architecture

J2EE Connector
Architecture

JDBC

MQ

MQ
Bridge

MQ
Bridge

Many protocols (SOAP , JMS,
MQ, FTP, email, etc.)

S

Secure protocol

Identify and authorise
the service requester

Identify and authorise
the service requester

Secure protocol

Identify and authorise
the service requester

Secure protocol
 Chapter 8. SOA and z/OS QoS 291

7331ch10.fm Draft Document for Review January 29, 2007 3:05 pm
Figure 8-7 Security authorization placed in Web Services Gateway

Figure 8-8 Service authorization positioned at WebSphere ESB

internal user

WebSphere
Application Server

Tivoli Access Management

check
authorisation

Web Services
Gateway

HTTP(s)

partner

WS-Security
and WS-Trust

WebSphere Enterprise Service Bus

Service
provider

Service
provider

SOAP over HTTP / WS-Security

internal user

HTTP(s)

partner

WS-Security and WS-Trust

WebSphere Enterprise Service Bus

Service
provider

Service
provider

TAM

check authorisation

service
registry

future

SOAP over HTTP
/ WS-Security

SOAP over HTTP
/ WS-Security
292 SOA Architcture Handbook for z/OS

Draft Document for Review January 29, 2007 3:05 pm 7331ch10.fm
The scope of the security discussion here is limited. We show in the following
sections that the IBM products used in the SOA architecture blocks have security
interaction points and use the security infrastructure of z/OS in a consistent way.
In order to show that we go in the next sections in turn over each product. For
each product we will use the same structure:

� Show security interaction points for the components of the product and which
resources are protected at that point.

� Show the security products that are used. We show if the RACF is used, or a
plugable registry, or just configuration files of the product.

WebSphere Application Server
z/OS security has special features that make it one of the most secure systems
available. The security layers, as they are used in conjunction with WAS, are
shown in Figure 8-9.

Figure 8-9 Security layers on z/OS as seen by WebSphere Application Server

We will now briefly summarize the security layers as shown in Figure 8-9.

Platform security

Java 2 security

WebSphere security

WebSphere/application
resources

Operating System security

JVM security

Java 2 security

CORBA security / CSI v2

J2EE security API

WebSphere security

HTML
Servlets/JSP
EJB

Naming
Admin

Security interaction points
 Chapter 8. SOA and z/OS QoS 293

7331ch10.fm Draft Document for Review January 29, 2007 3:05 pm
Operating System security
At this level RACF protects the WAS configuration
files and many other z/OS resources used by WAS.

Java 2 security At this point we protect access to J2EE application
components and the J2EE runtime (Java Virtual
Machine). This layer also includes the “J2EE
security API”, which gives control to the developer
and deployer to define security (primarily
authorization) on resources such as servlets/JSPs
and EJB methods based on roles. Users and groups
are assigned to these roles during application
deployment, using deployment descriptors.

WebSphere security
At this level WebSphere global security settings
protect access to system resources such as file I/O,
sockets, and properties.

A more detailed view of the security in the WebSphere environment in an end to
end context is shown in Figure 8-10.

Figure 8-10 End to end security in a WebSphere Application Server for z/OS environment
294 SOA Architcture Handbook for z/OS

Draft Document for Review January 29, 2007 3:05 pm 7331ch10.fm
Pluggable security registry
Usually the plugable registries support specific protocols. for example, in order to
access Tivoli Access Manager WAS supports Java Authorization Contract for
Containers (JACC), which is a specific set of APIs.

J2EE container security
At this level we use the J2EE API (as previously described), Java Authentication
and Authorization Service (JAAS) and the EJB security collaborator to
authenticate Java client requests to Enterprise JavaBeans (EJBs).

To secure access to resources we can use EJBROLE. Using the APPLDATA
segment of the RACF EJBROLE profile for the identity to be used for the RunAs
role allows RACF control.

Web Services security
When Web Services standards are used, an additional security layer may be
used, at the level of the SOAP message. Note that SOAP messages are sent
inside JMS messages or HTTP requests and the security available at those
levels applies as well. For example, a SOAP message sent inside an HTTP
request can be encrypted using SSL.

When we talk about “Web Services security” we refer to the security that can be
applied to the SOAP message and the invocation of the Web service; we do not
refer to all the security features and standards available at the JMS message or
the HTTP request level.

Web services messaging relies on two protocol layers: the (SOAP) message
layer, and the transport layer. Security can be implemented at both layers. WAS
secures the message layer by implementing WS-Security specifications (these
specifications are shown in Figure 8-11 on page 296)
 Chapter 8. SOA and z/OS QoS 295

7331ch10.fm Draft Document for Review January 29, 2007 3:05 pm
Figure 8-11 WS-Security specifications

The transport layer (HTTP, RMI/IIOP, MQ) is secured through the implementation
of authentication headers and through encapsulation in the SSL/TLS.

We return now to the SOAP layer to look into more detail on how WebSphere
Application Server implements the WS-Security specifications. Generally,
WS-Security is a message level standard that defines how to secure SOAP
messages, using:

� XML Digital Signature
Digitally sign the SOAP XML document, providing integrity, authenticity, and
signer authentication (JSR 105 describes the Java programatic
implementation).

� XML Encryption
Process for encrypting data and representing the result in XML providing
confidentiality (JSR 106 describes the java programatic implementation).

� XML Canonicalization
Provides normalized XML document that can be digitally signed and verified.

WebSphere Application Server supports the following WS-Security
authentication mechanisms via the insertion of a security token:

� Basic Authentication
The security token includes the user name and password information, and is
generated as <wsse:UsernameToken> with <wsse:Username> and
<wsse:Password>.

WS-Secure
Conversation WS-Federation WS-Authorization

WS-Policy WS-Trust WS-Privacy

WS-Security

SOAP Foundation
296 SOA Architcture Handbook for z/OS

Draft Document for Review January 29, 2007 3:05 pm 7331ch10.fm
� Signature
The security token includes the X.509 certificate of the signer of the data and
is generated as <ds:Signature> with <wsse:BinarySecurityToken>.

� ID assertion
ID assertion includes a user name only, since the identity is asserted, and is
generated as <wsse:UsernameToken> with <wsse:Username>.

� Custom
This mechanism includes a custom-defined token.

� LTPA
Use of an LTPA token is a WebSphere-specific customer token, generating a
<wsse:UsernameToken> with <wsse:Username>.

For each of the options there is extensive support available in the WAS
configuration dialogs. The Web Services security constraints are defined in the
IBM extension deployment descriptor and the binding file based on the Web
Service port. At the application level this means that the Web Services
configuration is stored in the two following extension deployment descriptors:

– ibm-webservices-ext.xml
– ibm-webservices-bnd.xml

Web container security
At this level the Web container interacts with RACF to:

� Authenticate the Web client (granularity by URI). The behavior is specified in
the WAS configuration file.

� Authorize the Web client. The behavior is specified in the WAS configuration
file.

Backend resource access security
At this point WAS makes available several options for securing access to
backend resources. We need to make sure that:

� access to backends is secured

� the connection to backends is a secure conduit

� the identity of the requester with all its security attributes is propagated to the
backend

There are some general options: we can choose whether to use common identity
(JAAS aliases) for connection pool or to project or assert an end user identity.

In order to secure the access to CICS we can use CICS Identity Projection. Two
methods are possible:

� Thread Identity support for connection identity for local connections.
 Chapter 8. SOA and z/OS QoS 297

7331ch10.fm Draft Document for Review January 29, 2007 3:05 pm
� Identity assertion of a WebSphere provided identity to CICS.

The connection to CICS supports SSL, and the SSL parameters are defined
using the J2C Connection Factory - SSL Custom Properties (configuration file in
WAS).

In order to secure access to IMS we can use IMS Identity Projection. two
methods are possible.

� Thread Identity support for connection identity for local connections.

� Identity assertion of a WebSphere provided identity to IMS (under specific
conditions and under the usage of IMS Connect trusted user support).

The connection to IMS supports SSL, and the SSL parameters are defined using
the IMS J2C SSL Custom Properties (configuration file in WAS).

In order to secure access to DB2 we can use thread identity and thread security
support for local connections.

WebSphere Process Server (WPS) and WebSphere Enterprise Service Bus (WESB)
WebSphere Process Server and WebSphere Enterprise Service Bus for z/OS
are built on top of WebSphere Application Server for z/OS and, therefore, inherit
the security capabilities of WAS.

SCA security

SCA provides its own capabilities for security. SCA definitions are observed by
WebSphere Process Server and WebSphere Enterprise Service Bus everywhere
in their architecture and development. SCA applies security by defining quality of
service qualifiers. The two SCA qualifiers for security relevant to WebSphere
Process Server and WebSphere Enterprise Service Bus are:
� SecurityIdentity

This is the J2EE role under which a component will be executed - regardless
of the invoking J2EE role.

� SecurityPermission
The required J2EE role to invoke an operation.

Message level security
Message level security is concerned with the flow of messages in transit. There
are many ways to secure these messages, including using the WS-Security
specification that is supported within WebSphere Process Server and
WebSphere Enterprise Service Bus for z/OS. The security activities are:

� Authentication of users when they attempt to connect to a Service Integration
Bus. Users attempting to establish a connection might have to provide a user
298 SOA Architcture Handbook for z/OS

Draft Document for Review January 29, 2007 3:05 pm 7331ch10.fm
ID and password. These are authenticated against the same registry that the
application server uses. Further access checks on the user name can be
performed when the connection accesses a destination (to send or to receive
a message), creates a temporary destination, or accesses a foreign bus.

� Ensuring confidentiality and integrity of the messages in transit. To ensure
that communications are secure you can set up secure transport chains and
select secure transports to protect the data transmitted along the link using
SSL or HTTPS. WS-Security can also be used for SOAP messages,
especially if they are asynchronous, because no handshake is needed with it.

� Control of access to bus for the Message Engines.

Runtime security
Security in WebSphere Process Server and WebSphere Enterprise Service Bus
is controlled by definitions in the configuration files, and by access to the native
or the pluggable registry. The configuration files include aliases to which default
users are mapped and security roles to which users must be granted access in
order to invoke these components. The components with predefined aliases and
roles are:

� Business process choreographer — aliases and roles
� CEI — aliases
� SCA — aliases and roles
� Human tasks engine — roles

Applications security
Securing applications is enabled by setting global security (in the configuration
file). At this level we are concerned with authentication and access control.

� Authentication
Enabled when global security is on, then clients must be authenticated. The
main authentication methods for clients are:

– Web clients: HTTP Basic Authentication.

– Java clients: Java Authentication and Authorization Service (JAAS.)

– Web services: WS-Security/SOAP authentication.

– Additionally all of these clients can use SSL authentication, or Lightweight
Third Party Authentication (LTPA). This mechanism allows choosing
between two different authentication possibilities (local user registry, or
LDAP (local or remote)).

� Access control
Is implemented usually by assigning J2EE roles to components.
 Chapter 8. SOA and z/OS QoS 299

7331ch10.fm Draft Document for Review January 29, 2007 3:05 pm
Adapter security
Adapters have to be secured as well, depending on the information they process
and their connections to specific Enterprise Information Systems. Within
WebSphere Process Server or WebSphere Enterprise Service Bus, an adapter
is an SCA import or export. This import or export can have SCA security
qualifiers defined for it to determine the role under which the adapter runs and
the role that is required to be authorized to access the adapter.

Enterprise information system specific security information (such as the user ID
that the transaction in the enterprise information system should run under) can
usually be specified in the connection factory of the adapter.

Figure 8-12 shows the way WPS and WESB integrate in the existing security
layers on z/OS and WebSphere.

Figure 8-12 WPS and WESB security

WebSphere Portal
Security for Portal Server on z/OS is provided through the Custom User Registry
(CUR) feature of WebSphere Application Server on z/OS.

Platform security

Java 2 security

WebSphere security

Operating System security

JVM security

Java 2 security

CORBA security / CSI v2

J2EE security API

WebSphere security

Security interaction points

WPS and WESB security

SCA components

SCA

Messages Applications Adapters

WS-Security
300 SOA Architcture Handbook for z/OS

Draft Document for Review January 29, 2007 3:05 pm 7331ch10.fm
Portal users can typically be a few hundred existing z/OS intranet users who
probably have user IDs managed through RACF, and potentially thousands of
new Internet or extranet users. The challenge is to provide these new users
direct and secure access to transactions and data via the Portal. These new
Portal users do not need RACF logon to the z/OS system, but do need to be
authenticated and granted access to the specific application they need to run
which is handled by WebSphere Portal via a portlet. This is where a separate
registry using the Lightweight Directory Access Protocol (LDAP) as a Custom
User Registry comes into play.

Figure 8-13 shows an overview of the security implementation of WebSphere
Portal Server on z/OS.

Figure 8-13 Security implementation for WebSphere portal on z/OS

Portal security
WebSphere Portal services requests from users or Web clients by authenticating
a user ID and password against the Custom User Registry using the Portal
Custom Servlet. It provides then the first layer of protection to internal Portal
resources, such as portlets, places and pages. For CUR, an authorization table is
provided via an XML file. Several files play an important role here:

� authtable.xml
This XML file contains the authorizations for each Web application installed
on the J2EE server for which the custom user registry is being used to
authenticate requests. The authorizations are based on roleName and
groupName definitions.

Portal user

XML config files
Role definitions

RACF

WebSphere Web
container

LDAP

Custom User
Registry

Portal
custom servlet

DB2
LDAP

repository

native
authentication

TDBM

HTTP(s)
 Chapter 8. SOA and z/OS QoS 301

7331ch10.fm Draft Document for Review January 29, 2007 3:05 pm
� authtablelist.xml
This CUR authorization table XML file is used to define the applications and
its authorization lists. The authorization table is managed by the administrator
to grant users and groups access to the J2EE resources on a per
application/portlet basis.

The native authentication feature uses LDAP with TDBM, but from a z/OS
perspective the authentication is actually performed by RACF using all its usual
stringent rules. From a management perspective there is no need for
administration of multiple registries or synchronization of passwords. More
importantly, from a WebSphere Portal perspective, RACF users and non-RACF
users can be defined in the same LDAP directory and Portal users are unaware
of any differences from what is normally done to log into the Portal.

Native authentication allows connection between the LDAP server and RACF
wherein the user ID and password that is used to authenticate to LDAP is
actually passed to the System Security Server to be verified. This setup allows
new Internet or extranet Portal customers to authenticate directly against the
LDAP server, while existing RACF Intranet users would be authenticated using
their RACF user ID and password.

WebSphere Message Broker
The following elements can be secured at this point:

� Topic-based security
Access to messages on particular topics is controlled using Access Control
Lists (ACLs).

� Authentication services using real-time nodes
An authentication protocol is used by a broker and a client application to
confirm that they are both valid participants in a session. This is done through
SSL authentication protocol known as mutual challenge-response password
authentication. This protocol is supported by Real Time nodes, HTTP listener
and WebSphere MQ java client.

� Message protection using real-time nodes
Message protection provides security options to prevent messages from
being read or modified while in transit.

8.3.5 Total cost of ownership

In this section we give just a few examples of the way TCO for the SOA products
is decreased. 2.7, “Analysis of the IBM products available for the SOA on z/OS”
on page 27, where we describe in detail the features of the products available as
SOA implementation blocks, shows that each version of the product delivers:
302 SOA Architcture Handbook for z/OS

Draft Document for Review January 29, 2007 3:05 pm 7331ch10.fm
� Enhancements in tooling for development, deployment, maintenance,
problem handling and resolution, general management (means reducing
personnel costs in deployment and management).

� Enhancement in performance (means reducing consumption, optimizing the
resource usage, better workload management and distribution).

� Enhancements in technology (means better productivity in using the
products).

� Enhancements in integration (means reducing costs in integrating the
product with the other elements of the SOA architecture, reducing the TCO for
the whole SOA platform).

WebSphere Message Broker
There are a number of features that improve the TCO for WMB on z/OS. Among
others we mention reporting and chargeback through SMF, using zSeries
Application Assist Processor (ZAAP) for the Java compute Node, XLST Node,
JMS real-time node. This means that message transformation will be able to
offload a significant percentage of its workload to the dedicated zAAP
processors. Other performance improvements (in areas like parser, ESQL,
aggregation implementation, and others) increase performance and
consequently reduces the TCO.

WebSphere Application Server
As described before, the TCO can be reduced by several means.

One of them is reducing the cost for development, deployment and management.
This was done through the implementation of JDK 5.0 innovations, a new
Automation Toolkit, tight integration with Rational tools, Application Server Toolkit
(AST) enhancements, new Console command assistant, bundle with IBM
support assistant.

Another way of enhancing the TCO is making sure that the product is more
efficient, more secure, and these capabilities should be delivered “out of the box”
as standard. This was accomplished, among others, through enhancement in
scaling and workload prioritization, implementation of J2SE™ 5, zAAP usage.

Yet another way of reducing the TCO is to enable easier integration with other
products of the same family and with products of other vendors (this reduces
integration costs and implicitly decreases the TCO). This was accomplished
through the implementation of new technologies (SIP servlet support),
implementation of the newest Web Services standards (Web Services
Notifications WS-N, Web Services Interoperability Basic profile WS-I BSP,
enhancements in WS-Security, and others).
 Chapter 8. SOA and z/OS QoS 303

7331ch10.fm Draft Document for Review January 29, 2007 3:05 pm
8.4 Quality of service of the SOA architecture

In this section we review the IBM SOA reference architecture and we show which
of the its feature contribute to specific areas of QoS. The way in which an
application is positioned over the SOA building blocks, the way in which it exploits
the SOA building blocks, is “creating” QoS features.

SOA brings by itself, by its own nature, Quality of Service:

� Increasing flexibility, by allowing the changing, replacing and new positioning
of services (remember that we are in a loose-coupled environment) without
touching the other parts of the application.

� Reduce the TCO by reusing services (services have standardized interfaces
and therefore the reusability is increased).

� Reducing the “time to market” by having the flexibility to react to any market
developments (expand services as required without impacting existing
customers, change business rules on the fly with the result of flexible
processes).

� Increase availability of the application by “cloning” of services.

� Build high availability architectures by adding service redundancy.

8.5 QoS and our implementation scenarios

In the following sections we will talk about how the QoS discussed earlier in this
chapter apply to the variety of implementation scenarios, discussed in Chapter 5,
“SOA implementation scenarios” on page 129.

We have defined an implementation scenario as a combination of a transition
approach and one or more solution techniques. An example of a transition
approach is “Improve” and an example of a solution technique is “CICS Service
Flow Feature”. Each of the solution techniques offers a certain level of QoS in the
various areas we discussed earlier in this chapter and it is not that hard to find
out those QoS for an individual solution technique. The challenge, however, is to
assess the End to End QoS of a combination of solution techniques. If two
solution techniques being applied are both highly secure, it does not mean that
the end to end solution will be highly secure. We will see that a lot depends on
the integration capabilities of the solution techniques in terms of QoS.

Note to Reviewer: Need to fill in QoS for WebSphere II
304 SOA Architcture Handbook for z/OS

Draft Document for Review January 29, 2007 3:05 pm 7331ch10.fm
8.5.1 Scalability in our implementation scenarios

An SOA scales if the end to end solution scales. This means that in all layers
(hardware, OS, middleware) and tiers, the SOA needs to be able to scale. The
solution techniques being applied and the environment in which they run (if not a
stand-alone solution) must be scalable. We have dicussed scalability attributes of
the SOA core products in 8.3.1, “Scalability” on page 276, but we haven’t really
talked about the individual solution techniques yet.

Table 8-1 shows for each solution technique whether it runs by itself or inside a
managed environment (such as WAS or CICS) and what scalability
characteristics are available.

Table 8-1 Scalability in our solution techniques

Solution
technique

Tasks
accomplished

Managed
environment
(runs in)

Scalability
characteristics

WebSphere
Application Server

Run business
application
services

Stand-alone � WLM
enablement

� Clustering of
WAS servers
(ND topology)

� WAS XD
features (ODR)

WebSphere Portal Run user
interaction services

WebSphere
Application Server

� See
WebSphere
Application
Server

WebSphere ESB Service integration WebSphere
Application Server

� See
WebSphere
Application
Server

WebSphere
Process Server

Process integration WebSphere
Application Server

� See
WebSphere
Application
Server

WebSphere MQ Service integration Stand-alone � WLM
enablement

� Clustering of
queues
 Chapter 8. SOA and z/OS QoS 305

7331ch10.fm Draft Document for Review January 29, 2007 3:05 pm
WebSphere
Message Broker

Service integration Stand-alone � WLM
enablement

� Clustering of
brokers within a
sysplex

WebSphere
Information
Integrator

Service
enablement

TBD � TBD

Host Access
Transformation
Services (HATS)

Service
enablement of a
3270 program

WebSphere
Application Server

� See
WebSphere
Application
Server

CICS TS V3.1 Run business
application
services

Stand-alone � WLM
enablement

� Clustering of
CICS servers
through
CICSPLEX

CICS Service Flow
Feature (SFF)

Service
enablement

CICS TS V3.1 � See CICS TS
V3.1

CICS Web
Services Support

Service
enablement

CICS TS V3.1 � See CICS TS
V3.1

CICS Transaction
Gateway (CICS
TG)

Service integration � JCA resource
adapter runs in
WAS

� CICS TG
Daemon runs
stand-alone
(only required
in remote
setup)

� See
WebSphere
Application
Server

� Scalability
through
implementation
of multiple
CICS TG
Daemons on
one or multiple
LPARs

Solution
technique

Tasks
accomplished

Managed
environment
(runs in)

Scalability
characteristics
306 SOA Architcture Handbook for z/OS

Draft Document for Review January 29, 2007 3:05 pm 7331ch10.fm
IMS V9 TM Run business
application
services

Stand-alone � WLM
enablement

� Clustering of
IMS servers
through
IMSPLEX

� Built-in scaling
through internal
prioritization
and workload
management.

IMS Connect Service integration Stand-alone (runs
in own address
space on z/OS)

� Scalability
through
implementation
of multiple IMS
Connect
address
spaces on one
or multiple
LPARs

IMS MFS Web
Services Support

Service
enablement

� Service
interface runs
in WAS

� Service runs in
IMS

� IMS Connect
used as
connector

� See
WebSphere
Application
Server

� See IMS V9
TM

� See IMS
Connect

IMS SOAP
Gateway

Service
enablement

� IMS Soap
Gateway does
not run on z/OS

� Service runs in
IMS

� IMS Connect
used as
connector

� Depends on
Windows/UNIX
scalability
capabilities

� See IMS V9
TM

� See IMS
Connect

Solution
technique

Tasks
accomplished

Managed
environment
(runs in)

Scalability
characteristics
 Chapter 8. SOA and z/OS QoS 307

7331ch10.fm Draft Document for Review January 29, 2007 3:05 pm
8.5.2 Availability in our implementation scenarios

The availability of an SOA depends on the sum of the availability of all the
components and services involved. As with scalability, this applies to layers
(hardware, OS, middleware) and tiers. The solution techniques being applied and
the environment in which they run (if not a stand-alone solution) must be
available. We have dicussed availability attributes of the SOA core products in
8.3.2, “Availability” on page 284, but we haven’t really talked about the individual
solution techniques yet.

Table 8-2 shows for each solution technique whether it runs by itself or inside a
managed environment (such as WAS or CICS) and what availability
characteristics are available.

Table 8-2 Availbility in our solution techniques

DB2 (stored
procedures)

Run information
services

� Service
interface runs
in WAS
(WORF)

� Service runs in
DB2 SP

� See
WebSphere
Application
Server

� WLM
enablement

Solution
technique

Tasks
accomplished

Managed
environment
(runs in)

Scalability
characteristics

Solution
technique

Tasks
accomplished

Managed
environment
(runs in)

Availabilty
characteristics

WebSphere
Application Server

Run business
application
services

Stand-alone � Clustering of
WAS servers
(ND topology)

� Automatic
Restart
Manager
(ARM)

� WAS XD
features, such
as ODR and
application
versioning

WebSphere Portal Run user
interaction services

WebSphere
Application Server

� See
WebSphere
Application
Server
308 SOA Architcture Handbook for z/OS

Draft Document for Review January 29, 2007 3:05 pm 7331ch10.fm
WebSphere ESB Service integration WebSphere
Application Server

� See
WebSphere
Application
Server

WebSphere
Process Server

Process integration WebSphere
Application Server

� See
WebSphere
Application
Server

WebSphere MQ Service integration Stand-alone � WebSphere
MQ shared
queues

� Clustering of
queues

WebSphere
Message Broker

Service integration Stand-alone � Clustering of
brokers within a
sysplex

� See
WebSphere
MQ for
MQ-related
availability
features

WebSphere
Information
Integrator

Service
enablement

TBD � TBD

Host Access
Transformation
Services (HATS)

Service
enablement of a
3270 program

WebSphere
Application Server

� See
WebSphere
Application
Server

CICS TS V3.1 Run business
application
services

Stand-alone � CICS Parallel
Sysplex
Manager
(CPSM)

� Transaction
mirroring

CICS Service Flow
Feature (SFF)

Service
enablement

CICS TS V3.1 � See CICS TS
V3.1

Solution
technique

Tasks
accomplished

Managed
environment
(runs in)

Availabilty
characteristics
 Chapter 8. SOA and z/OS QoS 309

7331ch10.fm Draft Document for Review January 29, 2007 3:05 pm
CICS Web
Services Support

Service
enablement

CICS TS V3.1 � See CICS TS
V3.1

CICS Transaction
Gateway (CICS
TG)

Service integration � JCA resource
adapter runs in
WAS

� CICS TG
Daemon runs
stand-alone
(only required
in remote
setup)

� See
WebSphere
Application
Server

� Availability
through
implementation
of multiple
CICS TG
Daemons on
one or multiple
LPARs

IMS V9 TM Run business
application
services

Stand-alone � Clustering of
IMS servers
through
IMSPLEX

IMS Connect Service integration Stand-alone (runs
in own address
space on z/OS)

� Availability
through
implementation
of multiple IMS
Connect
address
spaces on one
or multiple
LPARs

IMS MFS Web
Services Support

Service
enablement

� Service
interface runs
in WAS

� Service runs in
IMS

� IMS Connect
used as
connector

� See
WebSphere
Application
Server

� See IMS V9
TM

� See IMS
Connect

Solution
technique

Tasks
accomplished

Managed
environment
(runs in)

Availabilty
characteristics
310 SOA Architcture Handbook for z/OS

Draft Document for Review January 29, 2007 3:05 pm 7331ch10.fm
8.5.3 Reliability in our implementation scenarios

We have dicussed reliability attributes of the SOA core products in 8.3.3,
“Reliability” on page 285, but we haven’t really talked about the individual
solution techniques yet.

Table 8-3 on page 311 shows for each solution technique whether it runs by itself
or inside a managed environment (such as WAS or CICS) and what reliability
characteristics are available.

Table 8-3 Reliability in our solution techniques

IMS SOAP
Gateway

Service
enablement

� IMS Soap
Gateway does
not run on z/OS

� Service runs in
IMS

� IMS Connect
used as
connector

� Depends on
Windows/UNIX
availability
capabilities

� See IMS V9
TM

� See IMS
Connect

Solution
technique

Tasks
accomplished

Managed
environment
(runs in)

Availabilty
characteristics

Solution
technique

Tasks
accomplished

Managed
environment
(runs in)

Reliability
characteristics

WebSphere
Application Server

Run business
application
services

Stand-alone � Built-in
transaction
management

� Resource
Recovery
Services (RRS)
for global
transaction
coordination

WebSphere Portal Run user
interaction services

WebSphere
Application Server

� See
WebSphere
Application
Server
 Chapter 8. SOA and z/OS QoS 311

7331ch10.fm Draft Document for Review January 29, 2007 3:05 pm
WebSphere ESB Service integration WebSphere
Application Server

� See
WebSphere
Application
Server

WebSphere
Process Server

Process integration WebSphere
Application Server

� See
WebSphere
Application
Server

WebSphere MQ Service integration Stand-alone � Resource
Recovery
Services (RRS)
for global
transaction
coordination

� WebSphere
MQ functions to
guarantee
message
delivery

WebSphere
Message Broker

Service integration Stand-alone � See
WebSphere
MQ for
MQ-related
reliability
features

WebSphere
Information
Integrator

Service
enablement

TBD � TBD

Host Access
Transformation
Services (HATS)

Service
enablement of a
3270 program

WebSphere
Application Server

� See
WebSphere
Application
Server

CICS TS V3.1 Run business
application
services

Stand-alone � Built-in CICS
transaction
management

CICS Service Flow
Feature (SFF)

Service
enablement

CICS TS V3.1 � See CICS TS
V3.1

Solution
technique

Tasks
accomplished

Managed
environment
(runs in)

Reliability
characteristics
312 SOA Architcture Handbook for z/OS

Draft Document for Review January 29, 2007 3:05 pm 7331ch10.fm
CICS Web
Services Support

Service
enablement

CICS TS V3.1 � See CICS TS
V3.1

CICS Transaction
Gateway (CICS
TG)

Service integration � JCA resource
adapter runs in
WAS

� CICS TG
Daemon runs
stand-alone
(only required
in remote
setup)

� See
WebSphere
Application
Server

� Reliability
through
2-Phase
Commit
support (RRS)

IMS V9 TM Run business
application
services

Stand-alone � Built-in IMS
transaction
management

IMS Connect Service integration Stand-alone (runs
in own address
space on z/OS)

� Reliability
through
2-Phase
Commit
support (RRS)

IMS MFS Web
Services Support

Service
enablement

� Service
interface runs
in WAS

� Service runs in
IMS

� IMS Connect
used as
connector

� See
WebSphere
Application
Server

� See IMS V9
TM

� See IMS
Connect

IMS SOAP
Gateway

Service
enablement

� IMS Soap
Gateway does
not run on z/OS

� Service runs in
IMS

� IMS Connect
used as
connector

� Depends on
Windows/UNIX
availability
capabilities

� See IMS V9
TM

� See IMS
Connect

Solution
technique

Tasks
accomplished

Managed
environment
(runs in)

Reliability
characteristics
 Chapter 8. SOA and z/OS QoS 313

7331ch10.fm Draft Document for Review January 29, 2007 3:05 pm
8.5.4 Security in our implementation scenarios

Security is a complex topic and each solution technique has numerous security
aspects. We can only provide the highlights for each solution technique.

Table 8-3 on page 311 shows for each solution technique whether it runs by itself
or inside a managed environment (such as WAS or CICS) and what security
characteristics are available.

Table 8-4 Security in our solution techniques

Solution
technique

Tasks
accomplished

Managed
environment
(runs in)

Security
characteristics

WebSphere
Application Server

Run business
application
services

Stand-alone � Full J2EE and
Java security

� Web Services
security

� Authorization
and
authentication
supported by
LDAP or RACF

� Encryption
supported by
hardware
crypto

� Thread-level
security (when
local)

� Single Sign On
� CSIv2 support

for RMI-IIOP
requests

WebSphere Portal Run user
interaction services

WebSphere
Application Server

� See
WebSphere
Application
Server

WebSphere ESB Service integration WebSphere
Application Server

� See
WebSphere
Application
Server

WebSphere
Process Server

Process integration WebSphere
Application Server

� See
WebSphere
Application
Server
314 SOA Architcture Handbook for z/OS

Draft Document for Review January 29, 2007 3:05 pm 7331ch10.fm
WebSphere MQ Service integration Stand-alone � Queue
authorization
and
authentication

� Thread-level
security (when
local)

WebSphere
Message Broker

Service integration Stand-alone � See
WebSphere
MQ for
MQ-related
security
features

WebSphere
Information
Integrator

Service
enablement

TBD � TBD

Host Access
Transformation
Services (HATS)

Service
enablement of a
3270 program

WebSphere
Application Server

� See
WebSphere
Application
Server

CICS TS V3.1 Run business
application
services

Stand-alone � CICS security

CICS Service Flow
Feature (SFF)

Service
enablement

CICS TS V3.1 � See CICS TS
V3.1

CICS Web
Services Support

Service
enablement

CICS TS V3.1 � See CICS TS
V3.1

CICS Transaction
Gateway (CICS
TG)

Service integration � JCA resource
adapter runs in
WAS

� CICS TG
Daemon runs
stand-alone
(only required
in remote
setup)

� See
WebSphere
Application
Server

� Encryption
� Authentication
� Thread-level

security (when
in same LPAR)

Solution
technique

Tasks
accomplished

Managed
environment
(runs in)

Security
characteristics
 Chapter 8. SOA and z/OS QoS 315

7331ch10.fm Draft Document for Review January 29, 2007 3:05 pm
8.5.5 TCO in our implementation scenarios

A good TCO assessment requires to look at many aspects of the solution, such
as hardware utilization cost, software license cost, operational cost, maintenance
cost, skill maintenance and so on. It is beyond the scope of this book to review
each solution technique using those aspects. And, if we would try this, the
outcome may still not be accurate without any benchmarking. What we can do is
to indicate the usage level of specialty processors in each solution technique.
The usage level of specialty processors, such as the zAAP will influence the TCO
significantly. This will give you the opportunity to compare solution techniques for
this aspect.

IMS V9 TM Run business
application
services

Stand-alone � IMS security

IMS Connect Service integration Stand-alone (runs
in own address
space on z/OS)

� Authentication
� Thread-level

security (when
in same LPAR)

IMS MFS Web
Services Support

Service
enablement

� Service
interface runs
in WAS

� Service runs in
IMS

� IMS Connect
used as
connector

� See
WebSphere
Application
Server

� See IMS V9
TM

� See IMS
Connect

IMS SOAP
Gateway

Service
enablement

� IMS Soap
Gateway does
not run on z/OS

� Service runs in
IMS

� IMS Connect
used as
connector

� Depends on
Windows/UNIX
availability
capabilities

� See IMS V9
TM

� See IMS
Connect

Solution
technique

Tasks
accomplished

Managed
environment
(runs in)

Security
characteristics
316 SOA Architcture Handbook for z/OS

Draft Document for Review January 29, 2007 3:05 pm 7331ch10.fm
Table 8-5 Total Cost of Ownership: specialty processor usage

Solution
technique

Tasks
accomplished

Managed
environment
(runs in)

Specialty
processor usage

WebSphere
Application Server

Run business
application
services

Stand-alone � Most system
code and
application
code qualifies
to run on zAAP.

� Average usage
between 60%
and 70%.

WebSphere Portal Run user
interaction services

WebSphere
Application Server

� See
WebSphere
Application
Server

WebSphere ESB Service integration WebSphere
Application Server

� See
WebSphere
Application
Server

WebSphere
Process Server

Process integration WebSphere
Application Server

� See
WebSphere
Application
Server

WebSphere MQ Service integration Stand-alone � No zAAP
usage.

WebSphere
Message Broker

Service integration Stand-alone � Java Compute
Node code
qualifies for
zAAP.

WebSphere
Information
Integrator

Service
enablement

TBD � TBD

Host Access
Transformation
Services (HATS)

Service
enablement of a
3270 program

WebSphere
Application Server

� See
WebSphere
Application
Server

CICS TS V3.1 Run business
application
services

Stand-alone � CICS Java
programs
qualify for
zAAP.
 Chapter 8. SOA and z/OS QoS 317

7331ch10.fm Draft Document for Review January 29, 2007 3:05 pm
CICS Service Flow
Feature (SFF)

Service
enablement

CICS TS V3.1 � See CICS TS
V3.1

CICS Web
Services Support

Service
enablement

CICS TS V3.1 � See CICS TS
V3.1

CICS Transaction
Gateway (CICS
TG)

Service integration � JCA resource
adapter runs in
WAS

� CICS TG
Daemon runs
stand-alone
(only required
in remote
setup)

� No significant
zAAP usage.

IMS V9 TM Run business
application
services

Stand-alone � IMS Java
transactions
qualify for
zAAP.

IMS Connect Service integration Stand-alone (runs
in own address
space on z/OS)

� No significant
zAAP usage.

IMS MFS Web
Services Support

Service
enablement

� Service
interface runs
in WAS

� Service runs in
IMS

� IMS Connect
used as
connector

� See
WebSphere
Application
Server

� See IMS V9
TM

� See IMS
Connect

IMS SOAP
Gateway

Service
enablement

� IMS Soap
Gateway does
not run on z/OS

� Service runs in
IMS

� IMS Connect
used as
connector

� Not applicable
� See IMS V9

TM
� See IMS

Connect

Solution
technique

Tasks
accomplished

Managed
environment
(runs in)

Specialty
processor usage
318 SOA Architcture Handbook for z/OS

Draft Document for Review January 29, 2007 3:05 pm 7331ch10.fm
8.6 Managing QoS with SOA on z/OS

The ability to manage an SOA is a QoS by itself (manageability). And again, this
is a QoS in which the System z platform is very strong. However, to be able to
manage an SOA, we need more than hardware and OS features. We need to be
able to manage the different levels in the entire architecture, from hardware to
business process.

In the 2.4.11, “IT Services Management Services” on page 23 we discussed the
necessity of having tools that manage the new infrastructure, and we discussed
some Tivoli offerings. But we do not manage just every piece of the SOA
infrastructure, we can manage the application as a whole.

We should be able, using the existing tooling, to answer questions like:

� Which are the services (Web services) which did not fulfil the defined SLA

� How many services of a specific type were executed during a specific time
interval?

� What was the workload of services during a specific time interval?

� Which security policies are implemented at this moment?

� Who are the users that accessed a specific Web service during a specific
time interval ?

Figure 8-14 on page 320 shows, as an example, the way in which Tivoli products
cooperate and integrate themselves in the SOA architecture in order to manage
the QoS of the applications in the area identity management, policy management
and access management. The lower layer represents the management portal,
where all QoS information consolidation and presentation takes place.
 Chapter 8. SOA and z/OS QoS 319

7331ch10.fm Draft Document for Review January 29, 2007 3:05 pm
Figure 8-14 Tivoli products deliver management of QoS

8.7 Conclusion

We have shown the QoS delivered by a SOA architecture positioned on z/OS,
pointing that these QoS can be seen as combination of features from the
platform, the operating system, the products and the SOA architecture itself.

We have also seen that we have the means for managing (monitoring,
administering, reporting) the QoS features.
320 SOA Architcture Handbook for z/OS

Draft Document for Review January 29, 2007 3:05 pm 7331ch06 Version -1.fm
Chapter 9. SOA enablement case
studies

In this chapter we present a two case studies about SOA enablement on z/OS.
The cases studies play in different industries, have a variety of side objectives
and a different solution scenario as well.

In 9.1, “SOA enablement case study 1: IBM Life Insurance Solution Showcase”
on page 322 we present a SOA enablement case study playing in the insurance
industry.

In 9.2, “Case study 2: A bank deployed a large-scale SOA solution based on Web
services” on page 354 we present a similar case study, but in the field of the
banking industry.

9

© Copyright IBM Corp. 2006. All rights reserved. 321

7331ch06 Version -1.fm Draft Document for Review January 29, 2007 3:05 pm
9.1 SOA enablement case study 1: IBM Life Insurance
Solution Showcase

The IBM Life Insurance Solution Showcase provides a demonstration of Service
Oriented Architecture in an insurance industry context. Its infrastructure
integrates the functions of multiple Independent Software Vendors (ISV’s) and
IBM strategic software on multiple platforms.

It is implemented as a Variable Universal Life (VUL) policy sales demonstration
and a production scale infrastructure demonstration running a realistic load of
VUL sales plus other insurance industry background workloads. The production
scale infrastructure showcase includes scenarios for capacity upgrades and
outage situations, and the activity is monitored live for the audience during a
briefing.

The showcase focuses on automating the business process of selling VUL
insurance products reducing the 28 day long process to one that can be done (for
the simple case) in 30 minutes or so. There is great business value in being able
to sell and issue a policy to a client in one visit because it results in higher sales
by reducing the chance that a client will decide against buying a policy (the “not
taken” rate). The showcase demonstrates that SOA technology can be applied to
make business processes more efficient and flexible, and can directly result in
higher revenues, faster speed to market, and lower costs.

Although this showcase demonstration shows the selling of variable life
insurance policies, the underlying IT architectural principles are applicable to the
other business scenario as well.

9.1.1 SOA in an insurance industry context

SOA benefits can be applied to virtually any industry setting, but the insurance
industry generally has competitive and efficiency pressures that are driving
customers to look at the architecture seriously:

� Improved speed to market

� Competitive pressure

� Changing regulations and business processes

� Mergers and acquisitions

� Cost efficiency and outsourcing

The showcase makes the point that customers can use SOA technologies to
improve speed, efficiency, and flexible change to meet increasingly demanding
business environments.
322 SOA Architcture Handbook for z/OS

Draft Document for Review January 29, 2007 3:05 pm 7331ch06 Version -1.fm
9.1.2 The business problem

The VUL application in the showcase is the automation of the multiple step
business process that is used to sell variable life insurance. Without automation,
the process is a manually intensive coordination of many applications via
independent and different user interfaces, coupled with the requisite handling of
paper between many of the steps. The manual process has the following issues
that need to be addressed:

� Eliminate delays caused by snail mail between agent, customer and main
office.

� Eliminate errors caused by multiple points of data reentry, multiple user
interfaces.

� Provide means to measure the effectiveness of marketing campaigns.

� Provide means to control/monitor process adherence.

The enterprise has the following requirements:

� Leverage/reuse/integrate existing IT capability and skills.

� Provide the infrastructure to enable the company to be agile and responsive
to constantly changing business processes and market dynamics.

� Provide minimum risk (i.e. preference for evolutionary vs. revolutionary
change, keep the business running during change, do not break the business
while changing).

� Reduce the Total Cost of Ownership (TCO).

9.1.3 Enterprise view

The Enterprise view of the architecture is the high level description of how the
services are delivered, as shown in
 Chapter 9. SOA enablement case studies 323

7331ch06 Version -1.fm Draft Document for Review January 29, 2007 3:05 pm
Figure 9-1 The Enterprise view of the IBM Life Insurance Showcase

The Enterprise view of the IBM Life Insurance Showcase blends business and
application concepts with architectural aspects in a layered view including
business participants, channels & workplaces, business services, and service
providers.

It follows the style of a Service Oriented Architecture where an application is
composed of the orchestration of a set of services, supplied by service providers.

� Business Participants
The participants can be individuals or computer systems that need to interact
with business services of the insurance carrier.

� Channels & Workplaces
The participants interact with the business services through a "channel" that
is responsible for providing/controlling access appropriate to the participant's
needs.

� Business Services
Business services are grouped into sets of discrete actions that must be
performed as part of working within the insurance company. Business
services may be implemented by one or more service providers. A business
service may be composed of interacting with one or more service provider.

� Service Providers
Service providers are applications/components that perform the "back office"
level work.

Business
Services

Agent / Broker

Customer

Partner

Employee

Self-Service
Workplace

Self-Service
Workplace

Contact
Center

Contact
Center

Agent
Workplace

Agent
Workplace

Employee
Workplace

Employee
Workplace

Business
Gateway

Business
Gateway

Party

Policy

Underwriting

Billing

Claims

Marketing

Data
AnalyticsData

Analytics

Policy
Service

Party
Service

Billing
Service

U/W
Service

Claims
Service

Analytic
Service

Prospect

Service
Providers

Business
Participants

Channels &
Workplaces
324 SOA Architcture Handbook for z/OS

Draft Document for Review January 29, 2007 3:05 pm 7331ch06 Version -1.fm
9.1.4 Application architecture

The Application architecture defines and describes the application concepts and
capabilities used in designing the application. These concepts and capabilities
are necessary in applying technology to business design such that it supports
separation of concerns, minimizes technical duplication, maximizes sharing,
utilizes a common infrastructure, and supports independent construction of
applications and components as well as integration. It is the application
architecture that provides a solution or application to the business needs.

The Application architecture provided by the IBM SOA for Insurance Reference
Architecture is a slightly modified version of the layered IBM SOA Center of
Excellence solution stack. In this more technical view, the application architecture
firmly supports the separation of concerns through layering. It is the responsibility
of the application architecture to define the application principles necessary to
guide and govern enterprise application development and maintenance.

Requirements
The IBM Life Insurance Showcase use case of "Sell Variable Life Insurance"
requires the following:

� Reuse existing party infrastructure - presume that the insurance company
already has WebSphere Customer Center product installed.

� Reuse existing policy infrastructure - presume that the insurance company
already has LiDP "The Administrator" product installed.

� Eliminate data reentry between tasks - automate the data passing between
the applications.

� Enable future channels - the agent workplace is the first channel; others will
come geared towards clerks, help desk, etc.

� Enable regulatory compliance/auditing - there are regulatory requirements
that must be met/proved in the selling of any investment.

� Enable rapid deployment of new offerings - the process for selling doesn't
vary between types of offering, what changes is the offering contents.

� Enable targeted offerings - offerings that are geared towards a given set of
clients are "targeted". A list of "targets" requires the analysis of data against
some criteria.

� Eliminate paper (and associated delays) - self evident, so long as there is no
regulatory requirement for paper, or use of electronic means of data transfer
between parties is preferred.

� Enable measurements - provide a means to measure the process of selling
insurance using a business dashboard.
 Chapter 9. SOA enablement case studies 325

7331ch06 Version -1.fm Draft Document for Review January 29, 2007 3:05 pm
� Minimize human procedural errors - humans take shortcuts, forget things, and
don't know.

� Minimize human interactions - eliminate mundane, repeatable tasks,
maximize the time for the humans to do what cannot be automated.

Non-Functional Requirement (NFRs)
An internal IBM study conducted by IBM Global Business Solutions focused on
insurance industry non-functional system requirements and produced 23
categories that a technical architecture must deliver. The IBM Life Insurance
Solution Showcase helps to show how SOA architecture in an insurance context
addresses the highest priority areas, as follows

� Productivity
The degree to which a system or component aids or impedes the
effectiveness and efficiency of the user and/or business process. Productivity
is typically quantified by measuring the elapsed time from start to end of a
user performing a specific business process or scenario - including user talk
and think time.

� Performance
The degree to which a system or component accomplishes its designated
functions within given constraints. Performance is typically quantified by
averaging the elapsed times from start to end of a particular system
transaction. This measurement of responsiveness can be measured from the
user or component perspective.

� Capacity
The requirement to have adequate resources available for the workload to
complete in an appropriate time. Capacity is typically quantified by measuring
peak utilization of system components and total throughput of a particular
type of workload over a period of time.

� Scalability
The degree to which a system or component can increase throughput
capacity by adding additional resources in an effort to maintain performance
objectives.

� Availability
The system's readiness for use. Availability is typically quantified by the
percent of time that the system is ready for use.

� Recoverability
The ability to put the system back into a ready or usable state after a failure.

� Security
The solution's ability to provide secure management of systems access and
data.
326 SOA Architcture Handbook for z/OS

Draft Document for Review January 29, 2007 3:05 pm 7331ch06 Version -1.fm
With the exception of security, the workload scenarios are geared to highlight
how the solution can contribute to each area.

Decisions
The SOA for Insurance Reference Architecture dictates the application
architecture, as shown in Figure 9-2, for the IBM Life Insurance Solution
Showcase. The design decisions for implementation of these layers are noted
below.

Figure 9-2 The IBM Life Insurance Solution Showcase application architecture

The IBM Life Insurance Solution Showcase application architecture follows a
layered structure where applications are no longer provided by monolithic
products but by the orchestration of services.

The multiple layers shown in Figure 9-2 create a separation of concerns that
address the requirement set:

Access Interface Layer
Provides the view into the IT systems for different users. This enables the
development of different channels. The Life Solution uses the framework
provided by IBM WebSphere Portal and LDAP for security.

B
usiness R

ules

Access
Interface

Processes

Services

Components

Data

C
onsum

er
Provider

Users
 Chapter 9. SOA enablement case studies 327

7331ch06 Version -1.fm Draft Document for Review January 29, 2007 3:05 pm
Processes Layer
Provides a definition of what tasks, in what order, under what conditions, need to
be accomplished by what resource (user or system). This enables procedural
control and monitoring. This enables the elimination of data reentry by using a
user interface to capture data once to then "push it around" using the business
process logic. The Life Solution uses Business Process for Execution Language
for Web Services (BPEL4WS) for this process modeling as provided by IBM
WebSphere Business Integration Server Foundation. (In the next phase of the
application, the BPEL engine will use WebSphere Process Server).

Services Layer
Separates what needs to be done from its implementation. This enables the
aggregation of existing infrastructure with new infrastructure, speeds deployment
of new implementation, and standardizes interfaces to functions. ACORD1
messages will be used as the definition of data messages that are passed
around; this helps simplify composition of services for insurance.

The implementation of the services is a design decision; the Life Solution used
Simple Object Access Protocol (SOAP) over HTTP for those services called by
the business process. Other services used HTTP messages.

Component Layer
Provides the implementation of the service which in this reference
implementation provides the "home" to existing "traditional" (monolithic)
products. This layer is required to provide a services interface in SOAP over
HTTP or work through a service layer provided for it.

One vender product has a proprietary socket interface that was wrapped by a
service interface written by the system integration team. Other products created
service layers that met the specifications of the demonstration process, whereas
other products already supported a service interface that accepted ACORD
messages.

Data Layer
Is the home to all the data used in the organization. Data should be accessed via
some sort of service layer to provide a means to enable control access and
change.

The IBM Life Insurance Solution Showcase used DB2 Content Manager to serve
as the electronic repository for all the binary representation of what used to be
paper, Agent information in LiDP, and WebSphere Customer Center for the client
database.

1 ACORD (The Association for Cooperative Operations Research and Development) is a global,
nonprofit insurance association whose mission is to facilitate the development and use of standards
for the insurance, reinsurance and related financial services industries.
328 SOA Architcture Handbook for z/OS

Draft Document for Review January 29, 2007 3:05 pm 7331ch06 Version -1.fm
Business rules
Provides a codification of business level controls separate from the procedural
flow. This enables the business to deploy variants to a business process without
deploying a new one.

The IBM Life Insurance Solution Showcase used several products that provided
"rules"; Allfinanz xpertBridge (an underwriting product) has external XML files
that define the underwriting rules, LiDP has proprietary mechanism that defines
policy rules.

Access Interface (channel and workplaces)
The channel architecture includes the definition and description of enterprise
level concepts and capabilities of the channels and system interfaces that
connect business participants to the business and IT systems throughout the
enterprise.

A channel, used more commonly to describe access to the business, is
comprised of both logical (agent or direct) as well as more physical channel
mediums (in person or phone). An actor interface, used more commonly to
describe IT level access, is comprised of various human interfaces as well as
system to system interfaces.

The Life Solution was required to:

� Demonstrate users can have a centralized environment from which to
coordinate the different activities required by their role.

� Demonstrate different users can have different views based upon different
role.

� Use Internet standard implementation (HTTP, Web browser, thin client based
solution).

� Use IBM products and selected IBM business partner ISV products.

� Use standards based messages (ACORD).

� Provide a Web services interface.

The Showcase uses the IBM WebSphere Portal Server. This ensured that the
user interface would be based on Internet standard implementations and used
the aggregation capabilities of a portal to provide to users a 'workplace'
(collection of portlets) that suits that user's role.

When the users access the system with single signon, the credential of the user
is propagated to the business process component. The security information is
stored in an LDAP server.
 Chapter 9. SOA enablement case studies 329

7331ch06 Version -1.fm Draft Document for Review January 29, 2007 3:05 pm
With this approach the same portlet (capability) can be reused for different roles.
For instance, a "view policy" portlet is the same for both an insurance agent and
a client - the difference being an insurance agent can use the same portlet to see
the policies for any of his clients whereas the client is restricted to viewing only
theirs.

The IBM Life Insurance Solution Showcase implemented the "Agent Work Place"
which is a single environment to be used to access the business services
required to accomplish their role as insurance agent. This is shown in Figure 9-3.

Figure 9-3 Agent Work Place user interface

Marketing
Campaign

Collaboration

Links

Customer Services

Customer Analytics

Document
Management

To Do List

Email
330 SOA Architcture Handbook for z/OS

Draft Document for Review January 29, 2007 3:05 pm 7331ch06 Version -1.fm
Existing business process flow
The following is an approximation of the manual business process that the Life
Insurance Solution automates:

1. The "Innovating in Insurance Company" uses analytic software from Mapinfo
combined with client records from its client database (WebSphere Customer
Center) to send out a marketing campaign letter to a set of existing clients.

2. Individual agents receive a printed list of clients to call on to sell a new
Variable Life Insurance Policy - a life insurance policy backed by stocks or
stock funds.

3. Either the client contacts the agent or the agent contacts the client.

4. The agent interviews the clients to collect the parameters to generate an
illustration (An illustration shows the potential value of an investment over a
period of time and set of economic assumptions).

5. The following steps are required to generate an illustration:

6. Enter the parameters into the policy administration system (LiDP)

7. LiDP generates the illustration

8. the secretary prints it

9. she packages it with other required 'boiler plate' documentation

10.Agent gives it to the client for review

11.The client reviews the illustration and if they wish to continue with the
purchase they must first sign the illustration document acceptance agreement
(a regulatory requirement).

12.The agent then assists the client in completing an insurance application.

13.The insurance application is sent to the "home office" for processing:

a. the secretary enters the application information into the policy
administration system (LiDP)

b. she updates the client records to reflect the pending insurance sale
(WebSphere Customer Center)

c. she sends the application over to an Underwriter for review and approval.

14.Underwriter notifies the client for any requests for clarification via mail .

15.Client provides clarification via mail or email

a. This step could include arranging for medical appointments, release of
medical records, etc.)

16.Iterate until the Underwriter can make a determination.

17.If the Underwriter does not approve; a rejection letter is sent to the client.
 Chapter 9. SOA enablement case studies 331

7331ch06 Version -1.fm Draft Document for Review January 29, 2007 3:05 pm
18.If the Underwriter approves; the secretary assembles a policy package
containing all the prior pieces of data, plus the requisite legal 'boiler plate' and
send that to the client.

19.The client then is required to sign the policy (to enter into a contract with the
Insurance company) and make the initial payment to bind the contract.

Process model of IBM Life Insurance Solution Showcase
A process is a standardized, coordinated set and flow of activities and
sub-processes which collectively realize a business objective or policy goal. A
business process defines the flow between business activities (the smallest unit
of work meaningful to a business person).

The existing manual business process was analyzed with the help of tools like
WebSphere Business Modeler. A set of processes and sub-processes are
identified. BPEL4WS is used to describe the flow of activities among them.
Interaction diagram is also used during design stage to visualize the data flow
between the processes.

Figure 9-4 Part of the interaction diagram for the showcase

After analysis, the following processes are identified:

� GetParty

� IssueLifePolicy
332 SOA Architcture Handbook for z/OS

Draft Document for Review January 29, 2007 3:05 pm 7331ch06 Version -1.fm
� GetProposal

� GetProduct

� CreateIllustration

� UpdateApplication

� UnderwritePolicy

� ManuallyUnderWrite

� CreatePolicyPackage

� ReceivePayment

We used WebSphere Studio Application Developer Integration Edition to design
these processes which utilize the services exposed in the service layer. In a
WebSphere Proces Server version of this solution thistask would have been
done with WebSphere Integration developer (WID).

Services and component model
A service is a software resource with an externalized specification. This service
specification is available for searching, binding and invocation by a service
consumer.

A service component is a realization of a subsystem, a logical grouping of
functionally cohesive business aligned services, which is important enough to the
enterprise to be managed and governed as an enterprise asset.

Table 9-1 shows the list of services provided to the business process model and
their corresponding service components

Table 9-1 List of services to support the business model

Services Component Services provided

Party � Get Party
� addPartyInteraction
� addContact
� updateContact

Policy � getProductList
� generateProposal
� crateNewBusinessRecord
� updateBusinessRecord
� issuePolicy

Underwriting � “simple” underwriting
� getUWresult

Illustration � Create Illustration
 Chapter 9. SOA enablement case studies 333

7331ch06 Version -1.fm Draft Document for Review January 29, 2007 3:05 pm
One requirement of the showcase is it can reuse existing infrastructure provided
by ISVs. For example, the Policy service component is already provided by LiDP.

The line up of service components and their realization is as following:

Party Component
For the creating, reading, updating and deleting of the data associated with the
"parties" (clients, agents, etc.) who are participants in the business processes.
The WebSphere Customer Center product is used to provide this functionality.
Persistence is provided by DB2 hosted on zOS.

Policy Service Component
Related to insurance policies. It is realized by LiDP, but an insurance carrier can
have multiple such policy service providers each geared towards specific policy
'types'. Other ISV product(s) that manages other types of policies are being
looked in the future.

Underwriting Service Component
For performing (life) insurance underwriting. It is implemented by Allfinanz.

Illustration Service Component
For creating illustrations. It is implemented by LiDP but can be other "illustration"
calculators. This component relies on the documentation service for formatting
and presentation.

Documentation Service Component
For the creation, updating, handling, storing, and managing of documents within
the insurance company. This is a composite of subsystems implemented by
Document Science, IBM Workplace Forms™, Adobe and DB2 Content Manager.

Documentation � Compose document
� Update document
� Store document
� Creation forms
� Sign forms electronically

Geospatial � Provide geospatial information for sales analysis

User Interaction � Single Sign On

Data Mediation � DWLPartyToAcordParty
� Acord103toDWL
� DWLResponsetoUpdate

Services Component Services provided
334 SOA Architcture Handbook for z/OS

Draft Document for Review January 29, 2007 3:05 pm 7331ch06 Version -1.fm
The Adobe PDF format was decided upon to display to end users because of the
ubiquity of the Adobe PDF viewer on most personal computers. It was not
required to use this format for form presentation and capture.

Document creating and updating is the responsibility of Document Sciences. It
generates PDF files and requires the functionality of an Adobe product - Adobe
Form Server, to help with the differences between how Adobe vs. IBM Workplace
Forms provide electronic signatures that are stored within the PDF file.

Document storage is the responsibility of DB2 Content Manager, which is used to
store documents and forms used through the process. In addition, Adobe uses it
to store the templates of the forms; IBM Workplace Forms opted not to deploy in
this fashion for the demonstration. The document life cycle management
capabilities of DB2 Content Manager were not exploited in the demonstration
deployment.

There are two different approaches to human interaction. Each provides
electronic form creation, data capture and human interaction (e.g. fill in the box,
sign here, etc.).

Adobe - uses a product called Adobe Document Server to assemble forms from
a set of templates stored in DB2 Content Manager. For the demonstration, a
custom portlet was written that presented a series of screens to do form data
capture (instead of using the capabilities of the Adobe browser plug-in). The
Adobe browser plug-in was only used to support electronic signature capture and
for final document display.

IBM Workplace Forms - uses an XML 'package' that is rendered by a browser
plug-in. The demonstration portlet was responsible for creating this xml package
and sending to the IBM Workplace Forms browser plug-in. The package contains
everything, including MIME encoded attachments, so as to provide an audit trail
of what was electronically signed for. The approach also provides for off-line work
but this capability was not demonstrated. IBM Workplace forms rely on a
document converter to generate the required PDF structures for electronic
signatures.

Geospatial Service Component
For providing geospatial information. The IBM Life Insurance Solution Showcase
demonstration is predicated on geographic data, income information and other
demographics being analyzed together to select potential sales leads for a new
variable life insurance offering.

Data Mediation Component
For the translation of message data between components. Itemfield provides this
functionality. In early phases, this was embedded as a discrete step in the
business process flow. In the current phase, Itemfield function was extracted and
 Chapter 9. SOA enablement case studies 335

7331ch06 Version -1.fm Draft Document for Review January 29, 2007 3:05 pm
made into a separate Web service component to create a service interface for
general use.

User Interaction Service Component
For providing a user interface. This is implemented primarily by WebSphere
Portal for the visual functions, and the WebSphere Business Integration - Server
Foundation for process related actions.

Security Component
Providing control over user access and authorization. Portal security using LDAP
running on z/OS was used in this implementation to authenticate the users.

Process Orchestration Component
For controlling and tracking the assignment of work to resource. IBM WebSphere
Business Integration - Server Foundation, which was provided as part of the IBM
WebSphere Portal Server distribution, served as the implementation. It was
deployed on z/OS.

Figure 9-5 on page 337 shows the component architecture of the IBM Life
Insurance Solution Showcase.
336 SOA Architcture Handbook for z/OS

Draft Document for Review January 29, 2007 3:05 pm 7331ch06 Version -1.fm
Figure 9-5 The Component Architecture showing IBM and ISV products that comprise
each component

Policy

KEY

Business Process
Orchestration

(WBI-SF)

User Interface
(Portlets)

WebSphere Portal

Security
(WebSphere Portal)

Client File
(WCC)

Underwriting
(Allfianaz)

Administration
(LiDP)

Collaboration
(Lotus SameTime)

Calendaring
(Lotus Domino)

Database
(Policy

information)

ISV

Geospatial
(MapInfo)

UI

UI

UI

Insurance Agent

UI

UI

UI
Provides Display
As part of System

(connection to User Interface
component not drawn)

Document Creation
(Document Science)

Content Manager
(forms,boilerplate)

(DB2 CM)

Document

Database
(Client/Agent
information)

(DB2)

Party

Database
Interviews

DB2

Underwriting
 (Underwriting

Rules)

Collaboration Geospatial

Data Mediation
ItemField

Lenovo Tablet PC
Adobe Plug-In

IBM Workplace Forms Plug-In
Topaz Signature Pad

Database
(Process State)

(DB2)

Process Orchestration

Adobe
Document

Server

Forms Processing

UI

 Adobe Form
 Server

IBM Workplace
Forms

Not Implemented
 Chapter 9. SOA enablement case studies 337

7331ch06 Version -1.fm Draft Document for Review January 29, 2007 3:05 pm
Protocol between business process and service components
SOAP over HTTP is chosen since it is most widely available among the ISVs.
However, one vender product supports only ACORD/TCPIP but not SOAP/HTTP.
Moreover, its TCP socket implementation is not multi-threaded, so multiple ports
are opened, one for each thread. Managing which port to connect is the job of
the service consumer. We developed a J2C connector with connection
management so that the business process can invoke the service using
SOAP/HTTP.

Figure 9-6 J2C Connector as a gateway between SOAP/HTTP and ACCRD/TCP

Data model
A data model consists of all information and data both structured and
unstructured that represent business artifacts or aspects within the enterprise or
with which the enterprise does business.

Structured information and data includes organized and formal data stores both
operational and analytical, whereas unstructured information and data includes
images, documents, and other text based content.

The IBM Life Insurance Solution Showcase has a "realistic" data problem; no
single data repository (physical implementation) is feasible because the data is
spread across multiple representations implemented by multiple products. There
needs to be an enterprise level data model that federates the disparate data
sources.

In the showcase, the BPEL was built with explicit steps to keep this loose
confederation of application centric data bases (models) synchronized. In a
production environment these synchronization tasks should be broken out into a
set of separate services that would permit all business process from
access/updating the "federated data stores" in a consistent manner.

S
Business
Process SOAP/HTTP

Service Consumer

ISV product

ACORD/TCP

J2
C

C

on
ne

ct
or

WBI-SF

Service Provider

TCP/IP Sockets
338 SOA Architcture Handbook for z/OS

Draft Document for Review January 29, 2007 3:05 pm 7331ch06 Version -1.fm
All the ISVs agreed to use ACORD messages as the means to communicate,
except WebSphere Customer Center which uses its own proprietary format.

WebSphere Customer Center and LiDP agreed to use a common key for
correlating their two data models. The business process was responsible for
keeping the two data models synchronized. For a production deployment the
synchronization actions used by the business process should be turned into a
service.

WebSphere Customer Center did not have time to directly consume ACORD
messages and relied on data mediation functions provided by Itemfield to convert
ACORD messages to/from WebSphere Customer Center formats. This
mediation was encoded as part of the business logic for early phases, and was
moved to a separate data mediation service in the current implementation.

ACORD messages
Here is the list of the ACORD (Association for Cooperative Operations Research
and Development) transaction codes (aka. ACORD messages) used:

103 - New Business Submission

111 - Illustration Request

204 - Party Inquiry

228 - Producer Inquiry

301 - Party Search

500 - Form instance request

503 - Denial of Risk

505 - Holding Status Change

508 - Payment

510 - Form instance update

The ACORD OLifeExtension object was used to extend each ACORD message
used in the showcase with the additional data required to maintain the process
session identity and state throughout the process flow.

Note that the use of the OLifeExtension object introduces the possibility of
making the ACORD messages very specific to the enterprise that is
implementing the solution. Care should be taken to avoid over using extensions
so that the messages will be more easily exchanged with other enterprises,
outsourcers, and ISV products.
 Chapter 9. SOA enablement case studies 339

7331ch06 Version -1.fm Draft Document for Review January 29, 2007 3:05 pm
Rules model
The rules model includes the definition and description for the business rules that
shape the activities and structure of the enterprise. Various types and levels of
business rules exist, but in general a business rule is anything that defines or
constrains one aspect of the business that is intended to assert business
structure or influence behavior of the business.

The process required to sell an insurance offering does not vary significantly
between offerings, the steps are similar with variations (addition / removal of
steps) based on a criterion associated with a specific offering.

The SOA for Insurance Reference Architecture includes the concept of using
rules to determine process flow control that separates the process steps from the
variables that control which steps need to occur.

Some of the ISVs used in the Life Solution implemented within their products
approaches that can be considered "rules":

� Allfinanz has rules within the Underwriting Engine.

� LiDP has rules per policy that describe characteristics of the policy and the
capabilities of the agents.

9.1.5 Operational model

An operational model contains the distribution of an IT system's components
onto nodes, together with the connections necessary to support component
interactions, in order to achieve the IT system functional and non-functional
requirements, within the constraints of technology, skills, and budget.

Design principles and decisions
The following principles were followed to drive the design decisions:

1. All the critical data is on z/OS. DB2 running on z/OS can be configured to
provide a quality of service to support a highly available deployment. DB2
(used by WebSphere Customer Center) will be located on z/OS; Document
Manager will be located on z/OS.

2. All applications will run near the data. The goal was to have all products run
either in z/OS or under z/VM® running with SUSE Linux. This would exploit
the quality of service capabilities of z/OS and z/VM. Network security issues
could also be mitigated because the network connectivity within System z
configured with hipersockets and VLANs is inherently more secure than wired
networks.

3. Not more than one service provider per machine. This separation may not be
totally representative of production deployments however, this project
340 SOA Architcture Handbook for z/OS

Draft Document for Review January 29, 2007 3:05 pm 7331ch06 Version -1.fm
required that each IBM ISV had remote access to a machine for deployment
of their product and this arrangement greatly simplified coordinating this. With
this configuration each ISV or IBM product installer/configurator will be
capable of managing their own machine(s) permitting parallel
development/testing activity and debug.

4. WebSphere Application Servers other than the WBI-SF nodes and
WebSphere Portal Server will be single node (no Network Deployment - ND).

5. Support remote access. The infrastructure must provide at least SSH access
for non-IBMers and IBMers alike. The solution was built in the IBM
Gaithersburg center and has the following infrastructure features:

a. Internet facing SSH servers with managed users for non-IBMers.

b. IBM intranet facing SSH servers to support IBMers.

c. The lab network is accessible from the IBM intranet, but the machines
within the lab cannot access the IBM intranet.

d. The machines in the lab can access the Internet.

6. Application security was handled by Portal security and LDAP on z/OS.
Simple portal identity management was used in the form of a portal user ID
and password.

Correlation to technical architecture

Figure 9-7 The 3-tier style view of the Component Architecture

Browser
Client

Browser
Client

Pervasive
Client

Pervasive
Client

InternetInternet Reverse
Proxy

Reverse
Proxy

Gateway
Gateway

Web
Server

Web
Server

Portal
Portal

Security
Security

Enterprise
Service

Bus

Enterprise
Service

Bus

Public or
Private
Network

Public or
Private
Network

Party
Party

Partner
Services

Partner
Services

Policy
Policy

U/W
U/W

Billing
Billing

Claims
Claims

Marketing
MarketingBusiness

Rules

Business
Rules

Process
Flow

Process
Flow

Content
Mgmt

Content
Mgmt

Browser
Client

Browser
Client

Web
Server

Web
Server

Portal
Portal

Enterprise
Service

Bus

Enterprise
Service

Bus

Policy
Policy

U/W
U/W

Billing
Billing

Marketing
MarketingBusiness

Rules

Business
Rules

Process
Flow

Process
Flow

Content
Mgmt

Content
Mgmt
 Chapter 9. SOA enablement case studies 341

7331ch06 Version -1.fm Draft Document for Review January 29, 2007 3:05 pm
The diagram shown in Figure 9-7 on page 341 is logical and not a single physical
instance of a single server deployment but is physically dispersed, with each
component deployment providing some part of the functionality of the "bus".

The communication between components is in the form of SOAP XML messages
that follow the ACORD schema sent via HTTP over TCP/IP. Each component has
at least an HTTP server, and those that are J2EE compliant, an IBM WebSphere
Application Server.

File uploads/downloads to/from DB2 Content Manager used HTTP file transfer,
but data updates were accomplished via a JAVA API and JDBC (Information
Integration for Content (II4C) product).

9.1.6 Infrastructure (technical) architecture

An infrastructure or technical architecture defines and describes a shared
infrastructure that provides the required qualities of service across the
enterprise.

Requirements
� Position the appropriate use of the IBM eServer™ line and STG

Technologies. The insurance industry is a large System z customer but the
industry ISVs are not necessarily capable of running on zOS.

� Each ISV must be deployed independently of each other, are enabled to
install/configure/support their product, but are restricted from accessing other
ISV's environments.

� Select platforms that ISVs can properly support or fit the ISV marketing
interests.

� Create an infrastructure that will enable the follow-on iterations to build out the
infrastructure to support high availability use cases.

� Follow the On Demand Operating Environment Architecture.

Decisions
Rationale for the use of z/OS
� Within the insurance industry z/OS is traditionally used to house mission

critical, business vital data.

� WebSphere and DB2 data sharing on z/OS provide transactional integrity and
automatic fail over.

� LDAP on z/OS (which could be combined with RACF), provides the
foundation for system and application security.
342 SOA Architcture Handbook for z/OS

Draft Document for Review January 29, 2007 3:05 pm 7331ch06 Version -1.fm
� The Reliability, Availability, Serviceability inherent with System z architecture
and design.

Rationale for the use of Linux hosted by z/VM
� Exploit the existing hardware and skills.

� Provides a flexible, secure operating environment for each application.

� Ease of deployment of new images.

� Provides virtual network :

– Secure (cannot be tapped)

– Speed (memory speed)

– Reduced network infrastructure (# of wires, hubs, switches)

Rationale of the use of LPARs & Parallel Sysplex
� Provides failover

� Provides load balancing across the partitions.

� Integrated Resource Director provides for dynamic provisioning of server
resources.

� Hipersockets provides secure communication between LPARs.

The operational model shows that the spirit of the infrastructure architecture was
held to but there was some design decisions that were made due to the abilities
of the ISVs and IBM products.
 Chapter 9. SOA enablement case studies 343

7331ch06 Version -1.fm Draft Document for Review January 29, 2007 3:05 pm
Figure 9-8 Lineup of Service Providers on the physical servers

48

W
as

hi
ng

to
n

Sy
st

em
s

Ce
nt

er

©
20

06
 IB

M
 C

or
po

ra
tio

n
O

ct
ob

er
 2

00
6

VL
AN

W
eb

Sp
he

re

Cu
st

om
er

Ce

nt
er

Ap
pl

ica
tio

n
Se

rv
er

Ad
ob

e
Fo

rm
s

Se
rv

er

D
oc

um
en

t
Sc

ie
nc

es

pS
er

ie
s

p5
70

AI
X

5.
3

AI
X

5.
3

AI
X

5.
3

O
SA

 E
xp

re
ss

2
Sy

st
em

 z
9

EC

z/
VM

 V
5.

2

IB
M

W

eb
Sp

he
re

Po
rta

l
Se

rv
er

M
ap

In
fo

dr

ive
r

Al
lfin

an
z

xp
er

tB
rid

ge
M

ap
In

fo
En

vin
sa

Li
DP

Th
e

Ad
m

in
ist

ra
to

r

Li
DP

 T
he

Ad
m

in
ist

ra
to

r
(b

ac
kg

ro
un

d
wo

rk
lo

ad
)

CI
CS

W
BI

-S
F

Sy
sp

le
x

D
ist

rib
ut

or

DB
2

DB
2

Co
nt

en
t

M
an

ag
er

LD
AP

Cu
st

om
er

C

en
te

r F
as

t
Tr

ac
k

IC
F

IC
F

W
BI

-S
F

Sy
sp

le
x

Di
st

rib
ut

or

DB
2

z/
O

S
1.

6
z/

O
S

1.
6

z/
O

S
1.

6
Li

nu
x

SL
ES

 9
Li

nu
x

SL
ES

 9
Li

nu
x

SL
ES

 9
Li

nu
x

SL
ES

 9
Li

nu
x

SL
ES

 8

G
ue

st
 L

AN

H
ip

er
So

ck
et

s

C
lu

st
er

Ite
m

fie
ld

Co
nt

en
tM

as
te

r

Li
nu

x
SL

ES
 9

Li
DP

Te
st

z/
VM

 V
5.

2

IB
M

W

eb
Sp

he
re

Po
rta

l
Se

rv
er

M
ap

In
fo

dr

ive
r

Al
lfin

an
z

xp
er

tB
rid

ge
M

ap
In

fo
En

vin
sa

Li
DP

Th
e

Ad
m

in
ist

ra
to

r

Li
DP

 T
he

Ad
m

in
ist

ra
to

r
(b

ac
kg

ro
un

d
wo

rk
lo

ad
)

CI
CS

W
BI

-S
F

Sy
sp

le
x

D
ist

rib
ut

or

DB
2

DB
2

Co
nt

en
t

M
an

ag
er

LD
AP

Cu
st

om
er

C

en
te

r F
as

t
Tr

ac
k

IC
F

IC
F

W
BI

-S
F

Sy
sp

le
x

Di
st

rib
ut

or

DB
2

z/
O

S
1.

6
z/

O
S

1.
6

z/
O

S
1.

6
Li

nu
x

SL
ES

 9
Li

nu
x

SL
ES

 9
Li

nu
x

SL
ES

 9
Li

nu
x

SL
ES

 9
Li

nu
x

SL
ES

 8

G
ue

st
 L

AN

H
ip

er
So

ck
et

s

C
lu

st
er

C
lu

st
er

Ite
m

fie
ld

Co
nt

en
tM

as
te

r

Li
nu

x
SL

ES
 9

Li
DP

Te
st

O
pe

ra
tio

ns
Di

sp
la

y
Se

rv
er

 #
1

W
IN

 2
00

3

Ti
vo

li
En

te
rp

ris
e

Po
rta

l

W
IN

 2
00

3

IB
M

W

or
kp

la
ce

Fo
rm

s

Li
nu

x
3.

0

O
pe

ra
tio

ns
Di

sp
la

y
Se

rv
er

 #
1

W
IN

 2
00

3

Ti
vo

li
En

te
rp

ris
e

Po
rta

l

W
IN

 2
00

3

IB
M

W

or
kp

la
ce

Fo
rm

s

Li
nu

x
3.

0

O
pe

ra
tio

ns
Di

sp
la

y
Se

rv
er

 #
2

W
IN

 2
00

3

Tr
af

fic
G

en
er

at
or

W
IN

 2
00

3

Ad
ob

e
Do

cu
m

en
t

Se
rv

er
W

IN
 2

00
3

O
pe

ra
tio

ns
Di

sp
la

y
Se

rv
er

 #
2

W
IN

 2
00

3

Tr
af

fic
G

en
er

at
or

W
IN

 2
00

3

Ad
ob

e
Do

cu
m

en
t

Se
rv

er
W

IN
 2

00
3

Bl
ad

eC
en

te
r

344 SOA Architcture Handbook for z/OS

Draft Document for Review January 29, 2007 3:05 pm 7331ch06 Version -1.fm
The operating environment contains 23 independent servers, 5 different
operating systems (z/OS, z/VM, Linux, AIX®, Windows 2000) and 3 platforms
(System z, System p™ and BladeCenter®), The resiliency of the z/OS Parallel
Sysplex provides the required business data continuity, and is paired with
System p LPARs management to provide failover in the AIX environment.

Correlation to the SOA Reference Architecture

Figure 9-9 Products used in the IBM Life Insurance Solution Showcase mapped to the
SOA Reference Architecture

The components that make up the IBM Life Insurance Solution Showcase
functionality readily map to the SOA Reference Architecture. A primary goal was
to classify this mapping and to identify future projects that will focus on
implementations of some of these components as they pertain to a broader effort
of IBM Infrastructure Solutions development.

9.1.7 SOA tooling

The team used standard tools for implementing and monitoring the SOA
application and system environment.

Interaction
Services

Process
Services

Information
Services

Partner Services Business App
Services Access Services

Business Innovation & Optimization Services

Infrastructure Services

D
ev

el
op

m
en

t S
er

vi
ce

s

IT
 S

er
vi

ce
 M

an
ag

em
en

t

J2C Connector
WebSphere Customer Center,

LiDP, AllFinanz, MapInfo,
Document Science, ItemField

ESB

IBM Workplace Forms,
Adobe Document

Server, WebSphere
Portal Server

WebSphere
Business

Integration Server
Foundation

DB2 Content
Manager

Tivoli
Enterprise
Monitoring

WSAD-ID, RAD,
Portlet Factory zAAP, LPAR, z/OS,

Sysplex, WLM, RRS, z/VM,
Linux of System z
 Chapter 9. SOA enablement case studies 345

7331ch06 Version -1.fm Draft Document for Review January 29, 2007 3:05 pm
The tools that were chosen were the most current at the time and would work
with WBI-SF and the portal coding tasks that needed to be done. As the team
migrates the systems to WebSphere Process Server, the tooling will change.

WebSphere Studio Application Developer - Integration Edition (WSAD-IE)
WebSphere Studio Application Developer - Integration Edition WebSphere
Studio is a comprehensive integrated tool suite for dynamic e-business java
application development and deployment to WebSphere Business Integration -
Server Foundation systems. In particular it provides support for business
process definition and development in business process execution language
(BPEL).

WebSphere Integration Developer will be used when the team migrates the
system to WebSphere Process Server.

Rational Application Developer Version 6
IBM Rational Application Developer helps developers to design, develop,
analyze, test, profile and deploy high-quality Web, Service-oriented Architecture
(SOA), Java, J2EE and portal applications.

It includes full support for the J2EE programming model, integrated portal
development features, Unified Modeling Language (UML) visual editing
capabilities, code analysis functions and automated test and deployment tools.

In the development of the IBM Life Insurance Solution Showcase, it was used
mainly for Portal coding.

WebSphere Portlet Factory
IBM WebSphere Portlet Factory is used to extend WebSphere Portal capabilities
with tools and technology to create, customize, maintain, and deploy portlets.
WebSphere Portlet Factory's ease of use and development features streamline
the portlet development process to speed WebSphere Portlet deployments. In
the Life Insurance Showcase, WebSphere Portlet Factory is being considered as
a way to show business metrics in place of Tivoli Audit records. This would
provide a very impressive business dashboard if implemented. The Portlet
Factory team is looking at the Showcase data to see what can be done in terms
of a Business Dashboard portlet.

Tivoli Monitoring
IBM Tivoli Monitoring is a set of products that can be used to monitor and
optimize the performance and availability of the entire IT infrastructure.
346 SOA Architcture Handbook for z/OS

Draft Document for Review January 29, 2007 3:05 pm 7331ch06 Version -1.fm
Through a single customizable workspace portal (Tivoli Enterprise™ Portal
Server), the products can be used to manage the health and availability of the IT
infrastructure, end-to-end, including operating systems, databases and servers,
across distributed and host environments. IBM Tivoli Monitoring detects
bottlenecks and potential problems in essential system resources, provides
alerts, and helps to automatically recover from critical situations to ensure that
business critical applications are up and running.

In this nnsurance implementation it was used to:

� Isolate problems and scalability issues in the infrastructure.

� Monitor the system health.

� Bridge between business and technical monitoring.

� Provide a view of the system activity during the briefings.

The products do not provide SOA application statistics on systems running
WBI-SF, so the team implemented business critical audit records which were
monitored to track and display business volumes during the briefing.

Figure 9-10 on page 348 shows a enterprise view of the servers with health
indicator.
 Chapter 9. SOA enablement case studies 347

7331ch06 Version -1.fm Draft Document for Review January 29, 2007 3:05 pm
Figure 9-10 A Tivoli Enterprise Portal Server system monitoring screen

Figure 9-11 on page 349 shows the CPU utilization of each server.
348 SOA Architcture Handbook for z/OS

Draft Document for Review January 29, 2007 3:05 pm 7331ch06 Version -1.fm
Figure 9-11 A Tivoli Enterprise Portal Server CPU utilization Monitoring Screen

Figure 9-12 on page 350 show the business transaction volume (such as agent
interview per hour) and the technical resource usage (such as zAAP processor
usage) on the same screen.

 Chapter 9. SOA enablement case studies 349

7331ch06 Version -1.fm Draft Document for Review January 29, 2007 3:05 pm
Figure 9-12 Main dashboard to bridge business and technical volumes

33

IBM Financial Services Sector

© Copyright IBM Corporation 2006

Main Dashboard

Technical view

Business view
350 SOA Architcture Handbook for z/OS

Draft Document for Review January 29, 2007 3:05 pm 7331ch06 Version -1.fm
Figure 9-13 Issue/Bind display for problem drill down

Tivoli Enterprise monitor provides the drill down feature for performance problem
isolation.

Figure 9-14 on page 352 shows a different view of business process volumes.
Instead of number of interview per hour, this screen provides a cumulative view
of business volume throughout the day.
 Chapter 9. SOA enablement case studies 351

7331ch06 Version -1.fm Draft Document for Review January 29, 2007 3:05 pm
Figure 9-14 Business Metric Monitoring

9.1.8 Conclusion

The main purpose of the IBM Life Insurance Solution Showcase has been to
provide a platform for demonstrations that prove the viability of SOA applications
on System z centric infrastructures. A secondary purpose of the development of
the application and development of the infrastructure was to confirm specific
proof points for scalability and resilience.

Scalability
The project clearly proved scalability. The target rate of 500 sales interviews per
business day was easily met . During the full day briefings, the team is delivering
a rate of 2000 sales interview per business day and there does not appear to be
any obvious bottleneck to continuing that scalability with the current infrastructure
other than a threading issue with one of the vender software packages.

© 2006 IBM CorporationOctober 2006
352 SOA Architcture Handbook for z/OS

Draft Document for Review January 29, 2007 3:05 pm 7331ch06 Version -1.fm
Resilience
Resilience was proven with both planned and unplanned outage scenarios. One
scenario involved gracefully quiescing one of the two WBI-SF servers to apply
some maintenance and then bring it back up. During the outage, the workload of
scores of agents (simulated using a load driver) and one live agent continue
throughout the scenario. The live agent’s work is projected for the clients in the
briefing while the planned outage occurs; we have not encountered any problems
or response time slowing to date.

For the unplanned outage scenario, one of the two WSI-SF address spaces is
cancelled using a z/OS operator “C” command. Although a number of error
messages are seen, the robot agents and the live agent continue through this
error without losing work, just as in the planned outage scenario. In one situation,
the agent was missing some data in a portlet, but retried the step and got through
it without problems.

For additional information
The IBM Life Insurance Solution Showcase Web site can be found at:

http://www.ibm.com/systems/z/solutions/showcase/

and:

http://www.ibm.com/industries/financialservices/doc/content/landingd
tw/1357314103.html
 Chapter 9. SOA enablement case studies 353

7331ch06 Version -1.fm Draft Document for Review January 29, 2007 3:05 pm
9.2 Case study 2: A bank deployed a large-scale SOA
solution based on Web services

This case study is based on an IBM engagement. It is an SOA solution based on
Web services developed at a major bank. We identify the business scenario,
design objective, architecture decisions, design overview and key challenges
encountered.

9.2.1 Business driver

This bank has over 1200 branches, with on average, over 5500 tellers working
daily. The teller platform used to be a DOS application which quickly becomes
obsolete. Also the existing cheque processing involves a lot of manual
intervention. By reengineering the teller platform using SOA technology, the bank
expects to save over $20M annually.

Apart from the cost saving, the project has some non-quantified benefit, such as
modernization of platform, positioning for code reuse, enhancing business
analysis as there will be consolidated transaction records of what the customer
and teller does.

9.2.2 Design objectives

� Design a teller services platform to meet the cpu cost and response time
objective.

� Develop services that can be reused by other Lines Of Business.

� Design for data center independence

– prepare for the possibility of data centers topology change due to merging
or accruing a subsidary

� Accommodate changing business needs with minimal impact to the design.

� Build a layered application architecture.

� Position to consolidate business logic on the J2EE platform.

� Design for “branch server” independence

– cost saving by removing the server in every branch

9.2.3 A typical business flow

Figure 9-15 on page 355 depicts an example of a business flow associated to
teller transactions.
354 SOA Architcture Handbook for z/OS

Draft Document for Review January 29, 2007 3:05 pm 7331ch06 Version -1.fm
Figure 9-15 Typical business flow

Here is the typical interaction between a teller and the customer:

1. A customer walks up to the teller counter. The teller identifies him using the
bank card or other form of identity document, then retrieves the information
about this customer including his account balance.

2. The customer is planning to perform two transactions: withdraw $500 from his
checking account and make a payment of $200 towards his credit card. The
teller enters this sequence of transactions via the application user interface
running on his workstation. This bundle of transactions is sent to the data
center in one service request. Now, the following is done by the application:

– decompose the request

– perform authorization

– fulfill the withdraw

– handle the payment

– update the application journal

– send one reply back to the teller

At the teller counter the receipts are printed and the cash is given out.

Client Session

1
2

3Identify client
and

 retrieve
balance

Withdraw $500 from account 123
-Pay bill 200
-Get cash 300

1. Teller enters transaction details
2. Client enters PIN to authorized
3. Teller posts the transaction
bundle in one service request
4. Teller prints receipt and pays
cash

Next service
request (if any)

Client
walks to
the Teller
counter

Client
finishes
business

4

New Offer
 Chapter 9. SOA enablement case studies 355

7331ch06 Version -1.fm Draft Document for Review January 29, 2007 3:05 pm
3. If the customer has another service request, the process will be similar to the
previous request.

4. The teller has accessed the CRM application, and may use this opportunity to
offer new banking services to the customer e.g. ask if the customer is
interested in a new credit card.

The duration of the client session is an important indicator of how productive the
teller is. The bank will want to have the duration as short as optimally possible
with the help of technology.

9.2.4 Architectural decisions

The following architectural decsions have been taken before commencing.

Service oriented design and analysis
The Service oriented design and analysis can be grouped into three major steps:
identification, specification and realization decisions, as shown in Figure 9-16 on
page 357. Usually, these steps are carried out iteratively until a satisfactory
decision can be made.
356 SOA Architcture Handbook for z/OS

Draft Document for Review January 29, 2007 3:05 pm 7331ch06 Version -1.fm
Figure 9-16 Service oriented design and analysis

Identification
The objective of identification is to identify candidate services that are worth
implementation. The list of candidates comes from the result of business
requirement analysis (top down approach) or from existing asset analysis
(bottom up approach).

Specification
For each candidate service, the following needs to be defined: dependencies,
composition, exposure decisions, quality of service constaints. Also, decision
regarding the management of state within a servicehave to be taken. Then, the
services components and relationships to realize the services are defined.

Realization decision
This phase determines in which architectural layer the services components are
placed along with rules to define how the layers interact with each other. Then,
the mapping of logical runtime patterns to technical infrastructure is made, after
an evaluation of technical contraints and Quality of Service.

Input from Business Analysis / Existing Asset Analysis

Identification
of candidate Services

Specification
of Services and Components

Realization
Decision

Output to SOA Implementation
 Chapter 9. SOA enablement case studies 357

7331ch06 Version -1.fm Draft Document for Review January 29, 2007 3:05 pm
Logical design of the teller service platform
Figure 9-17 shows the logical architecture for the solution. It is based on a
“Adapter-provided Service interface” pattern, as discussed in “Adapter-provided
service interface (A)” on page 120.

Figure 9-17 Logical runtime pattern of the new teller platform

Architecture of the services consumer
The service consumer is the user Interface Interface (UI) running in a Window
workstation used by the teller. This workstation connects to other devices such
as a passbook printer, bank card reader and cash dispenser via existing driver
programs. Apart from the UI, this workstation also hosts other VB.NET business
applications. For the implementation of the teller application UI, the following
options were considered:

� presentation layer implementation

The choices were:

– J2EE application client

– VB.NET rich client

– Browser

The decision has been taken to use a VB.NET rich client.

Some remote branches of the bank have relatively low bandwidth connection
to the data center. A typical business transaction may require several
“interactions” from the teller. To keep the duration of the client session short,
the communication with the data center will be kept to the minimum. With a
rich client, there will be more flexibility on the UI, e.g. it can be programmed to
bundle multiple transactions in one service request and submit to the data
center. It can also perform preliminary data validation without involving the
host. Although a browser solution has the advantage of being easier to
maintain and cost less, it was ruled out as the delay imposed by the network
would be unacceptable.

z/OS

IM S

Service
consumer

3270 Application
Adapter

m iddleware P DB

Service Provider
358 SOA Architcture Handbook for z/OS

Draft Document for Review January 29, 2007 3:05 pm 7331ch06 Version -1.fm
VB.NET was also selected as the customer has significant investment in skill
and reusable asset in this area.

� Data Sharing and formatting with existing VB.NET applications in the
workstation

The choices were:

– Use existing framework for VB application

– Develop new framework

– Other products

The following decision has been taken:

– Use an existing framework for easier integration with other .NET
applications.

Architecture of the services provider
Figure 9-18 on page 360 shows the architecture on the service provider platform.

J2EE is the strategic platform for the business logic and “backend” core
applications are hosted in IMS and DB2 in z/OS. The following options are
considered:

� The protocol between the service consumer and provider

The choices were:

– SOAP over HTTPS

– SOAP over MQ

The decision takes was:

– SOAP over HTTPS

While MQ has the advantage of guaranteed delivery, it requires an MQ queue
manager at the branch. This contradicts one design objective of this project,
namely, to remove the branch servers for cost saving. Therefore, SOAP over
MQ was ruled out. As HTTP is inherently not a very reliable protocol, there is
application logic in both the service consumer and provider layers to handle
the errors of lost messages.

� In the service provider layer, the services exposed to the consumer are
coarse-grained and there is application logic running in the WebSphere
Application Server to encapsulate fine grain transactions provided by the
backend. The connection to the backend is via J2C connectors. Our business
scenarios require both synchronous and asynchronous connections to IMS.
For the synchronous one, we use IMS Connect. For the asynchronous
transactions, MQ is used.
 Chapter 9. SOA enablement case studies 359

7331ch06 Version -1.fm Draft Document for Review January 29, 2007 3:05 pm
� To connect to DB2, the Type 2 JDBC driver is used for performance.

Figure 9-18 Product mapping of teller platform

9.2.5 Solution overview

In the following sections we will describe the solution overview, both from a client
(teller) perspective and a service provider perspective.

Teller application layers
Figure 9-19 on page 361 shows the solution for the teller application.

Client Component/UI
VB.NET

WIN 2K/XP

WebSphere Application
Server on z/OS

Servlet

Service EJB

Service EJB

Service EJB

JC
A C

onnector
Data

IM
S C

onnect
M

Q

IMS Appl 1

IMS Appl 2

IMS Appl 3

Service
Consumer

Service Provider
EIS

DB2

Adapter middleware
360 SOA Architcture Handbook for z/OS

Draft Document for Review January 29, 2007 3:05 pm 7331ch06 Version -1.fm
Figure 9-19 Application layers in the teller application

Interaction Interface layer
This layer routes the request to the appropriate service while shielding the
services from the message format and transport protocol. This facilitate future
implementation of alternative protocols such as SOAP over MQ.

Process Choreography layer
The current release of the application does not exploit this layer

Services Layer
This layer provides the abstract service interfaces to the consumer and
separates the implementation logic. It also encapsulate similar business
functions supported by different Enterprise Information System (EIS) into one
service. For example, “withdraw from checking”, “saving” or “loan accounts” can
be handled by one common service. The services can be “atomic” or ‘composite’
which invokes other services.

Component layer
The layer implements the logic of the service. It containers stateless session
EJBs which connect to the IMS via the Connection Integration layer.

Interaction Interface

Process Choreograhpy

Services

Simple or Composite

Components

EJBs

Access Integration

JCA

Enterprise Data

IMS

SS S S S

C
on

su
m

er
P

ro
vi

de
r

Client

In
fra

st
ru

ct
ur

e
S

er
vi

ce
s

(Q
oS

, L
og

gi
ng

, S
ec

ur
ity

,
M

an
ag

em
en

t &
 M

on
ito

rin
g)

 Chapter 9. SOA enablement case studies 361

7331ch06 Version -1.fm Draft Document for Review January 29, 2007 3:05 pm
Access Integration layer
This layer decouples the IMS from the EJBs. It is a business requirement for the
EJBs to connect to one of the IMS in three different centers, via IMS Connector
for JAVA or JMS. This layer will make the decision of which protocol to use and
where the request should send to based on the rules in a configuration file.

9.2.6 Key challenges in the Services Provider layer

In the following sections we discuss some of the main key issues that needed to
be resolved at the service provider side of the solution.

Lost messages
The connection between service consumer and provider is via http(s) which is
inherently unreliable. Lost message are not acceptable in a financial institution.
Here are the scenarios for a lost message”

� Lost incoming service request message to the provider.

– There is no impact, the consumer can resend the request.

� Lost outgoing response message from the service provider.

– The transactions are executed, but the service consumer is not notified of
the result and may resend the same request again. To protect against the
re-driving of the same transactions, a strategy is needed to uniquely
identify each service request bundle, track the result of the individual
transaction within the bundle, and reconstruct the response messages if
necessary.

– This is implemented by an application journal in DB2, it is known as “intent
table”. Each service request bundle comes in with a unique identifier
generated from the rich VB.NET client. The whole request is first stored in
the journal with this identifier as the key. As each transaction in the bundle
is processed, the outcome is stored in the journal. If a service request end
up with a duplicate key exception when it is stored in the journal, then the
request has been handled previously. The response messages can be
rebuild based on the unique request identifier and the transaction records
in the journal.

Transaction management
The customer has a policy of not implementing two-phase commit support in
IMS, so the transactions run in “commit mode one, sync mode zero”, meaning
IMS commits the transaction when it receives it. If no further response is heard
from IMS, the caller cannot tell whether the transaction is successful or not. In
our case where a service request may be composed of multiple IMS
362 SOA Architcture Handbook for z/OS

Draft Document for Review January 29, 2007 3:05 pm 7331ch06 Version -1.fm
transactions, a strategy is needed to handle the situation when no response is
received from IMS.

The solution is to use the application journal which records the whole request
and the outcome of each transaction in the bundle. If there is any “in doubt”
situation, there is a business process of agent assisted reconciliation of those
transactions.

Multiple processing centers
The bank has three data centers to serve customers in three geographic
locations. The data is not consolidated i.e. the account information in the IMS
system of data center “1” is different from that of data center “2”. Suppose a
customer has an account in a city served by data center 1 and he is on travel to
the city served by data center 2. If he would go to a branch to withdraw some
cash from his account, the teller should be able to complete the business
transaction regardless which city this customer comes from.

The solution is to use a router pattern in the service integration adapter layer
where the routing rules are externalized in the configuration. In other words,
when the account number of this customer indicates his information is stored in
data center 1, the application in data center 2 should connect to the IMS in data
center 1 and complete the service.

Should there be a requirement to consolidate the data centers, the routing rules
can be changed easily to reflect that.
 Chapter 9. SOA enablement case studies 363

7331ch06 Version -1.fm Draft Document for Review January 29, 2007 3:05 pm
Figure 9-20 Design for IMS location independence

C
ontent Sw

itch

W AS

W AS

IM
S

 C
onnect

IM S Appl.

C
ontent S

w
itch

W AS

W AS

IM
S

 C
onnect

IM S Appl.

C
ontent S

w
itch

W AS

W AS

IM
S C

onnect

IM S Appl.

C enter 1

C enter 2

C enter 3

C enter 1
B ranch

C enter 2
B ranch

C enter 3
B ranch
364 SOA Architcture Handbook for z/OS

Draft Document for Review January 29, 2007 3:05 pm 7331bibl.fm
Related publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this redbook.

IBM Redbooks
For information about ordering these publications, see “How to get IBM
Redbooks” on page 366. Note that some of the documents referenced here may
be available in softcopy only.

� ????full title???????, xxxx-xxxx

� ????full title???????, SG24-xxxx

� ????full title???????, REDP-xxxx

� ????full title???????, TIPS-xxxx

Other publications
These publications are also relevant as further information sources:

� ????full title???????, xxxx-xxxx

� ????full title???????, xxxx-xxxx

� ????full title???????, xxxx-xxxx

Online resources
These Web sites are also relevant as further information sources:

� Description1

http://????????.???.???/

� Description2

http://????????.???.???/

� Description3

http://????????.???.???/
© Copyright IBM Corp. 2006. All rights reserved. 365

7331bibl.fm Draft Document for Review January 29, 2007 3:05 pm
How to get IBM Redbooks
You can search for, view, or download Redbooks, Redpapers, Hints and Tips,
draft publications and Additional materials, as well as order hardcopy Redbooks
or CD-ROMs, at this Web site:

ibm.com/redbooks

Help from IBM
IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services
366 SOA Architcture Handbook for z/OS

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/

Draft Document for Review January 29, 2007 3:05 pm 7331IX.fm
Index

Numerics
3270 application

Access Services 61
Business Application Services 61
characteristics 58
Development Services 61
ESB 60
Information Services 60
Infrastructure Services 61
Interaction Services 59
IT Services Management Services 61
Partner Services 60
Process Services 59

A
Activation Specification 158
Adapter-provided service interface 120
aggregation 238
aggregation, in WebSphere Message Broker 239
agility 14
Asset Transformation Workbench (ATW) 112

Application Analyzer 113
Application Architect 114
Application Profiler 113
Business Rules feature 114
features 112
Reuse Analyzer 114

availability 271

B
Basic Mapping Support (BMS) 56
batch

Access Services 75
Business Application Services 75
Development Services 76
ESB 75
Information Services 75
Infrastructure Services 76
input 184
Interaction Services 74
invocation 184
output 184
© Copyright IBM Corp. 2006. All rights reserved.
Partner Services 75
Process Services 74

batch input 72
batch output 72
binding, of Web services 252
BPEL+ extensions 247
Brokered/mediated service interface (B) 120
business dashboard 265
Business Process Execution Language (BPEL)
109
business process flow 21
Business Service Management 23
business state machine 21
Business-Driven Development (BDD) 108

C
channel 62
CICS 3270 Bridge 151
CICS Interdepedency Analyzer 111
CICS Link3270 Bridge 151
CICS Service Flow Modeler 116
CICS Transaction Gateway (CICS TG) 59, 148
CICS Transaction Server 27

channels 37
containers 37
handlers 37
pipelines 37
Service Flow Modeler (SFM) 37
Service Flow Runtime (SFR) 37
SOA features 37
Web services specifications supported 37
Web services support 37

CICS Web Services Assistant 146
CICS Web Services feature 146
CICS Web Support (CWS) 59
client/server 62
Coarse grained access 14
COMMAREA 56
Common Event Infrastructure (CEI) 234
Composite Application Management 23
composition, of services 10
connection dispatching 281
Cross Coupling Facility (XCF) 274
 367

7331IX.fm Draft Document for Review January 29, 2007 3:05 pm
D
data replication 82
data storage on z/OS 78
Data Warehouse 83
DB2

SOA features 38
device 62
DFSMSdss Encryption Feature 275
Distributed Program Link (DPL) 145
Distributed VIPA 281
distributing stack 281
distribution manager 281
Document Access Definition Extension (DADX)
200
DVIPA 281

E
Enhanced Driver Maintenance 272
Enterprise Generation Language (EGL) 116
Enterprise Service Bus (ESB) 15

advanced capabilities 229
basic capabilities 228
canonical adapter 20
correlation 20
distribution 20
enrichment 20
Event Services 19
Mediation Services 19
monitoring 20
protocol switch 19
routing 20
selection criteria 231
transformation 20
Transport Services 19

ETL (Extract Transform Load), batch oriented 80
ETL (Extract Transform Load), message oriented
81
eWLM (enterprise WLM) 277
External Call Interface (ECI) 59
Extract Transform and Load (ETL) 209
Extract Transform Load (ETL) 9

F
fine grained access 14

G
GDPS modes 274

GDPS/Global mirroring with asynchronous PPRC
replication technology 272
GDPS/PPRC 274
GDPS/PPRC synchronous mirroring 272
GDPS/XRC 274
GDPS/XRC asynchronous mirroring 272
Geographically Dispersed Parallel Sysplex (GDPS)
274
Geograpically Dispersed Parallel Sysplex (GDPS)
272
granularity, of a service 10

H
High Availability Manager 30
horizontal scaling 277
Host Aaccess Transformation Services (HATS) 27
Host Access Transformation Services (HATS) 59,
123, 138
Host On Demand (HOD) 59
HTTP requests, distribution 281
Human Task List 31

I
IBM Encryption Facility for z/OS 275
IBM SOA reference architecture 16, 304

Access Services 21
Business Application Services 22
Business Innovation and Optimization Services
18
Business Service Choreography 20
Business Service Directory 20
Development Services 18
Enterprise Service Bus (ESB) 19
ESB Gateway 21
Information Services 21
Infrastructure Services 22
Interaction Services 21
IT Services Management Services 23
Partner Services 22
Process Services 21

IBM Tivoli Composite Application Monitor 26
IBM Web Services Gateway 237

End Point Listener (EPL) 237
IBM Web Services Gateway, basic components
237
IBM WebSphere Host Access Transformation Ser-
vices (HATS), in WebSphere Portal 31
IMS Connect 59, 153
368 SOA Architcture Handbook for z/OS

Draft Document for Review January 29, 2007 3:05 pm 7331IX.fm
IMS Connect XML Adapter 156
IMS MFS Web enablement 142
IMS MFS Web services support 141
IMS MFS Web Support 141
IMS SOAP Gateway 154
IMS SOAP Gateway deployment utility 155
IMS SOAP Gateway server 155
IMS SOAP Gateway, XML transformation 156
IMS Transaction Manager 27

IMS calllout 38
IMS Connector for Java PL/I application support
38
IMS SOA Composite Business application sup-
port 38
IMS SOAP Gateway 38
Integrated Connect XML Adapter support for
COBOL 38
MFS Web support 38
SOA features 38

Information service 204
information service 204
Integrated Development Environment (IDE) 61
Integrator 83

J
J2EE Connector Architecture (J2C) 147
J2EE Connector Architecture (JCA) 286

Common Client Interface (CCI) 287
connection management contract 287
security contract 287
Service Provider Interface (SPI) 287
system-level contracts 286
transaction management contract 287

Java Authentication and Authorization Service
(JAAS) 295
Java Authorization Contract for Containers (JACC)
295
Java Server Faces (JSF) 180
Java Server Pages (JSP) 164
JSR 105 296
JSR 106 296
JSR 168 30

K
KPIs 98

L
lifecycle 243
Listener Port 158
Location transparency 24
loose coupling 12
LPARs 273

M
mediation 19
Message Driven Beans (MDB) 167
Message Engine (ME) 283
Message Flow, as service consumer 235
Message Flow, as service provider 235
Message Format Service (MFS) 57
Message Formatting Services (MFS) 141
mid-tier 62
multichannel 62

Access Services 69
Business Application Services 69
Development Services 69
ESB 68
Information Services 68
Infrastructure Services 69
Interaction Service 66
Partner Services 68
Process Services 68

N
native authentication 302
Non-Functional Requirements (NFRs) 119, 131

availability 132
flexibility 132
performance 131
reliability 132
scalability 131
security 132
skills 133

O
Object Transaction Service (OTS) 286
Open Transaction Manager Access (OTMA) 59

P
Parallel Sysplex 272–273
Patterns for e-business 118
PIPELINE 146
policies 243
 Index 369

7331IX.fm Draft Document for Review January 29, 2007 3:05 pm
portlet 180
process integration

definition 241

Q
QoS 39
Quality of Service 39
Quality of service (QoS) 269

R
Rational Application Developer (RAD) 138
Rational RequisitePro 110
Rational Software Architect (RSA) 110
Rational Unified Process (RUP) 97, 130
Redbooks Web site 366

Contact us xiii
reliability 274
requirements, functional 131
resilience 132
Resource Management 23
Resource Recovery Service (RRS) 275
Resource sharing 273

S
scalability 271, 276
scaling, horizontal 131
scaling, vertical 131
Scratch Pad Area (SPA) 57
security 275
self-healing attributes 272
service 10
Service Component Architecture (SCA) 232, 247

security 298
Service Data Objects (SDO) 247
Service Flow Feature 116
Service Flow Feature (SFF) 139
Service Flow Modeler (SFM) 139
Service Flow Runtime (SFR) 140
Service Integration Bus (SIB) 230

 230
features 230

Service Integration Maturity Model (SIMM) 104
views assessed 105

service interface 12
service interface patterns 119

adapter-provided service interface pattern 120
brokered/mediated service interface pattern

120
native service interface pattern 119
redeveloped code with native service interface
pattern 121

Service Level Agreement (SLA) 131
service orientation 10
Service Oriented Architecture (SOA) 10
Service Oriented Modeling and Analysis (SOMA)
10
service, aspects 11
service, coarse grained 99
service, fine grained 99
Service-Oriented Modeling and Architecture 96
Service-Oriented Modeling and Architecture (SO-
MA) 96

domain decomposition 98
existing asset analysis 98
goal-service modeling 98
major steps 96
position within RUP 97
service allocation 100

antipattern 101
service identification 98

antipatterns 99
Service Proliferation Syndrome 99
silo approach 99

service model 98
service realization 101

antipattern 102
service specification 99

aspects 100
subsystem analysis 98

Session Initiation Protocol (SIP), in WAS for z/OS
29
Single Point Of Failure (SPOF) 272
SOA governance 257

key aspects 260
SOA Governance Lifecycle 259
SOA implementation block approach 220

Advanced Services Adoption 236
advanced services adoption 221
basic Web services 220
business process orchestration 221
business services exploitation 221
discovery and dynamic binding 222
Enterprise Service Bus exploitation 221

SOA Lifecycle 108
Assemble stage 108

tools, code development 115
370 SOA Architcture Handbook for z/OS

Draft Document for Review January 29, 2007 3:05 pm 7331IX.fm
tools, discovery and refactoring 110
Model stage

tools 109
stages 108

SOA lifecycle 15
SOA lifecyle

assemble 15
deploy 15
manage 15
model 15

SOA Readiness Assessment 107
SOA, definitions 11
SOAP for CICS feature 146
starting scenario

data access and integration 78
starting scenarios 3, 53

3270 scenario 55
batch 71
homegrown SOA 87
multichannel 62

Sysplex Distributor 274, 281

T
tight coupling 12
Tivoli Composite Application Manager (ITCAM) for
SOA

SOA features 41
Tivoli Composite Application Manager (ITCAM) for
WebSphere

SOA features 41
Tivoli Omegamon 26
Tivoli Workload Scheduler (TWS) 71
transition approaches 4, 122

Adapt 123
Improve 123
Innovate 124

Transport neutrality 24

U
Unified Modeling Language (UML) 109
URIMAP 146
User-Defined Functions (UDFs) 202

V
vertical scaling 277
Virtual IP Address (VIPA) 281

W
Web clipping 180
Web Service Atomic Transaction protocol 286
Web service gateway 236
Web Services for Remote Portlets (WSRP) 31
Web Services Invocation Framework (WSIF) 238,
253
Web Services Object Runtime Framework (WORF)
199
Web services Object Runtime Framework (WORF)
38
Web Services security 295

authentication
Basic Authentication 296
Custom 297
ID assertion 297
LTPA 297
Signature 297

ID assertion 297
message layer 295
specifications 296
transport layer 295
WS-Security 295
WS-Security authentication mechanisms 296
XML Canonicalization 296
XML Digital Signature 296
XML Encryption 296

WEBSERVICE 146
Websphere Application Server 27
WebSphere Application Server (WAS)

servant region 277
WebSphere Application Server for z/OS

SOA features 29
WebSphere Business Modeler 25, 109
Websphere Business Modeler 26
Websphere Business Monitor 26
WebSphere Developer for z (WDz) 28
WebSphere Developer for zSeries (WDz) 116, 140

key features 116
Remote System view 116

WebSphere Enterprise Service Bus (WESB) 32,
234
WebSphere Enterprise Service Bus for z/OS

features 32
WebSphere Enterprise Service Bus WESB)

functions 232
WebSphere ESB 27
WebSphere Host Access Transformation Services
(HATS)
 Index 371

7331IX.fm Draft Document for Review January 29, 2007 3:05 pm
SOA features 36
WebSphere Information Integrator 206
Websphere Information Integrator 26
WebSphere Information Integrator. 205
WebSphere Information Services Director (WISD)
206
WebSphere Integration Developer 25
WebSphere Integration Developer (WID) 28, 32,
109, 246
Websphere Message Broker 27
WebSphere Message Broker (WMB) 234

functions 232
Resource Recovery Services (RRS) 240
Transaction property 239

WebSphere Message broker (WMB)
SRRetrieveEntity node 252
SRRetrieveITservice node 252

WebSphere Message Broker for z/OS
features 34

WebSphere MQ
queue sharing 35

WebSphere MQ CICS Bridge 150
WebSphere MQ IMS Bridge 157
WebSphere MQ Trigger Monitor 150
WebSphere Partner Gateway 26
WebSphere Portal 26
WebSphere Portal for z/OS

SOA features 30
WebSphere Process Server 26
WebSphere Process Server (WPS) 110

business object maps 246
Business Objects 245
business state machine 245
Common Event Infrastructure (CEI) 245
dynamic service selection 246
human tasks 245
ibusiness rules 246
interface maps 246
mediation 246
process engine 245
relationships 246
selector 254
Service Component Architecture (SCA) 245
service qualifier 240
WS-BPEL 245

WebSphere Process Server for z/OS
features 31

WebSphere Service Registry and Repository (WS-
RR) 243, 251, 262

major functions 263
policy enforcement 251
product architecture 263
service availability management 251
service endpoint selection 251
SOA features 35
WebSphere ESB, interaction 252
WebSphere Message Broker, interaction 252

WebSphere Studio Asset Analyzer (WSAA) 110
Workload Manager (WLM) 271

application environment 279
enclave 279
HTTP work classification 280
IIOP work clasification 280
Message Driven Beans classification 280
performance goals 278
queuing services 278
Service Class 278
Transaction Class (TC) 279
Transaction Class mapping file 279
work qualifier 278
workload classification document 279

Workplace WebSphere Everyplace 26
WSBind file 146

X
XAResource 286
XML Services for the Enterprise (XSE) 116
372 SOA Architcture Handbook for z/OS

To determ
ine the spine w

idth of a book, you divide the paper P
P

I into the num
ber of pages in the book. A

n exam
ple is a 250 page book using P

lainfield opaque 50#
sm

ooth w
hich has a P

P
I of 526. D

ivided 250 by 526 w
hich equals a spine w

idth of .4752". In this case, you w
ould use the .5” spine. N

ow
 select the S

pine w
idth for

the book and hide the others: S
p

ecial>C
o

n
d

itio
n

al Text>S
h

ow
/H

id
e>S

p
in

eS
ize(-->H

id
e:)>S

et . M
ove the changed C

onditional text settings to all files in your
book by opening the book file w

ith the spine.fm
 still open and F

ile>Im
p

o
rt>F

o
rm

ats the C
onditional Text S

ettings (O
N

LY
!) to the book files.

D
raft D

ocum
ent for R

eview
 January 29, 2007 3:05 pm

7331sp
in

e.fm
373

(0.1”spine)
0.1”<

->
0.169”

53<
->

89 pages

(0.2”spine)
0.17”<

->
0.473”

90<
->

249 pages

(0.5” spine)
0.475”<

->
0.875”

250 <
->

 459 pages

(1.0” spine)
0.875”<

->
1.498”

460 <
->

 788 pages

(1.5” spine)
1.5”<

->
 1.998”

789 <
->

1051 pages

SOA Architcture Handbook for z/OS

SOA Architcture Handbook for
z/OS

SOA Architcture Handbook for
z/OS

SOA Architcture Handbook for z/OS

(2.0” spine)
2.0” <

->
 2.498”

1052 <
->

 1314 pages

(2.5” spine)
2.5”<

->
nnn.n”

1315<
->

 nnnn pages

To determ
ine the spine w

idth of a book, you divide the paper P
P

I into the num
ber of pages in the book. A

n exam
ple is a 250 page book using P

lainfield opaque 50#
sm

ooth w
hich has a P

P
I of 526. D

ivided 250 by 526 w
hich equals a spine w

idth of .4752". In this case, you w
ould use the .5” spine. N

ow
 select the S

pine w
idth for

the book and hide the others: S
p

ecial>C
o

n
d

itio
n

al Text>S
h

ow
/H

id
e>S

p
in

eS
ize(-->H

id
e:)>S

et . M
ove the changed C

onditional text settings to all files in your
book by opening the book file w

ith the spine.fm
 still open and F

ile>Im
p

o
rt>F

o
rm

ats the C
onditional Text S

ettings (O
N

LY
!) to the book files.

D
raft D

ocum
ent for R

eview
 January 29, 2007 3:05 pm

7331sp
in

e.fm
374

SOA Architcture
Handbook for z/OS

SOA Architcture
Handbook for z/OS

®

SG24-7331-00 ISBN

Draft Document for Review January 29, 2007 3:05 pm

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed by
the IBM International Technical
Support Organization. Experts
from IBM, Customers and
Partners from around the world
create timely technical
information based on realistic
scenarios. Specific
recommendations are provided
to help you implement IT
solutions more effectively in
your environment.

For more information:
ibm.com/redbooks

SOA Architcture
Handbook for z/OS

How to get to an SOA
on z/OS

IBM software
solutions on z/OS

Quality of Service
and governance of
SOA on z/OS

Service Oriented Architecture (SOA) is a hot topic on the
agenda of many CIOs, architects and IT professionals. Most
of us believe that SOA will truly make IT more flexible and
that time to market of IT solutions will improve significantly.

However, in many cases the bright and shining landscape of
an SOA with all its advantages is almost the opposite of
today’s reality in many IT environments. IT is too complex,
too tightly integrated and therefore NOT flexible and the time
to market of IT changes as a result of changing business
requirements is not acceptable. Furthermore, technology is
not in-place, and even more importantly, the organization is
many times not ready for an SOA.

Even though most of us believe in the advantages of an SOA,
it remains a big challenge to execute towards a full-blown
implementation. In any case, when it comes to
implementation of an SOA, it will be done in steps. This
Redbook is about the possible approaches towards an SOA
on z/OS and the technology options available. The book will
help you to define an SOA strategy on z/OS and decide on
technology to be used in this journey.

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Front cover
	Contents
	Notices
	Trademarks

	Preface
	The team that wrote this redbook
	Become a published author
	Comments welcome

	Chapter 1. Introduction
	1.1 The approach in this book
	1.1.1 Starting scenarios
	1.1.2 Transition approaches
	1.1.3 Solution techniques
	1.1.4 Service interface patterns

	1.2 The target audience for this book
	1.3 Objectives of this book
	1.4 How this book is organized

	Chapter 2. Target SOA architecture on z/OS
	2.1 Overview
	2.2 The context
	2.3 SOA basics
	2.3.1 SOA basic concepts
	2.3.2 SOA perspectives
	2.3.3 Defining a service
	2.3.4 IBM SOA lifecycle

	2.4 IBM SOA reference architecture
	2.4.1 Development Services
	2.4.2 Business Innovation and Optimization Services
	2.4.3 The Enterprise Service Bus (ESB)
	2.4.4 Interaction Services
	2.4.5 Process Services
	2.4.6 Information Services
	2.4.7 Access Services
	2.4.8 Partner Services
	2.4.9 Business Application Services
	2.4.10 Infrastructure Services
	2.4.11 IT Services Management Services

	2.5 Criteria to determine whether the SOA has been implemented succesfully
	2.6 IBM options on z/OS platform for each building block of the SOA reference architecture
	2.6.1 Infrastructure Services
	2.6.2 Development Services
	2.6.3 IT Services Management Services
	2.6.4 Business Innovation and Optimization Services
	2.6.5 Interaction Services
	2.6.6 Process Services
	2.6.7 Information Services
	2.6.8 Partner Services
	2.6.9 Business Application Services
	2.6.10 Access Services
	2.6.11 Enterprise Service Bus (ESB)

	2.7 Analysis of the IBM products available for the SOA on z/OS
	2.7.1 WebSphere Application Server for z/OS
	2.7.2 WebSphere Portal
	2.7.3 WebSphere Process Server
	2.7.4 Websphere ESB
	2.7.5 Websphere Message Broker
	2.7.6 WebSphere Service Registry and Repository
	2.7.7 WebSphere Host Access Transformation Services
	2.7.8 CICS Transaction Server
	2.7.9 IMS Transaction Manager
	2.7.10 DB2
	2.7.11 SOA systems management on z/OS
	2.7.12 IBM Tivoli Composite Application Manager for SOA V6.0
	2.7.13 IBM Tivoli Composite Application Manager for WebSphere

	2.8 Implementation options for the SOA architecture on z/OS
	2.8.1 SOA implementation option 1 - “service enablement”
	2.8.2 SOA implementation option 2 - “service integration”
	2.8.3 SOA implementation option 3 - “process integration”
	2.8.4 Conclusion

	Chapter 3. Starting scenarios
	3.1 Starting scenario - 3270 application
	3.1.1 A typical 3270 application
	3.1.2 3270 application variations
	3.1.3 3270 application characteristics
	3.1.4 Challenges when moving to an SOA

	3.2 Starting scenario - multichannel
	3.2.1 Multichannel variations
	3.2.2 Multichannel characteristics
	3.2.3 Challenges when moving to an SOA

	3.3 Starting scenario - batch
	3.3.1 Batch variations
	3.3.2 Batch characteristics
	3.3.3 Challenges when moving to an SOA

	3.4 Starting scenario - data access and integration
	3.4.1 Data on z/OS
	3.4.2 Data access and integration variations
	3.4.3 Characteristics
	3.4.4 Challenges when moving to an SOA

	3.5 Starting scenario - Homegrown SOA
	3.5.1 Homegrown SOA variations
	3.5.2 Homegrown SOA characteristics
	3.5.3 Challenges when moving to an SOA

	Chapter 4. The SOA transition process
	4.1 Methodologies for analyzing the business and application environment
	4.1.1 Service-Oriented Modeling and Architecture (SOMA)
	4.1.2 Service Integration Maturity Model (SIMM)
	4.1.3 SOA Readiness Assessment

	4.2 Tools to assist in the SOA transformation process
	4.2.1 Tools used in the Model stage
	4.2.2 Discovery and refactoring tools used in the Assemble stage
	4.2.3 Code development tools used in the Assemble stage
	4.2.4 Tools used in the Manage stage
	4.2.5 Interrelationships between tools

	4.3 A pattern-driven approach to transition from “core” applications to services
	4.3.1 Starting scenarios
	4.3.2 Service interface patterns
	4.3.3 Transition approaches
	4.3.4 Characteristics of the service interface patterns and transition approaches
	4.3.5 Applying the transition approaches and service interface patterns

	Chapter 5. SOA implementation scenarios
	5.1 The architectural decision process
	5.1.1 The existing IT environment
	5.1.2 Functional and non-functional requirements
	5.1.3 The architectural overview and operational architecture
	5.1.4 Selecting a transition approach and solution technique

	5.2 SOA implementation scenarios for 3270 application
	5.2.1 Using the Improve transition approach
	5.2.2 Using the Adapt transition approach
	5.2.3 Using the Innovate transition approach

	5.3 SOA implementation scenarios for multichannel
	5.3.1 Using the Improve transition approach
	5.3.2 Using the Adapt transition approach
	5.3.3 Using the Innovate transition approach

	5.4 SOA implementation scenarios for batch
	5.4.1 Multi entity handling in batch services
	5.4.2 Using the improve transition approach
	5.4.3 Using the adapt transition approach with batch as the service provider
	5.4.4 Using the adapt transition approach with batch as the service caller
	5.4.5 Using the innovate transition approach
	5.4.6 A practical, mixed approach

	5.5 SOA implementation scenarios - Data access and integration
	5.5.1 Variation 1: Data access
	5.5.2 Variation 2: Integrator
	5.5.3 Variation 3: batch and messaging ETL

	5.6 SOA implementation scenarios for homegrown SOA
	5.6.1 Using the Improve transition approach
	5.6.2 Using the Adapt transition approach
	5.6.3 Using the Innovate transition approach

	Chapter 6. Towards service integration and process integration
	6.1 The SOA implementation block approach
	6.1.1 Stage one - “service enablement” implementation block
	6.1.2 Stage two - “service integration” implementation blocks
	6.1.3 Stage three - “process integration” implementation blocks

	6.2 Stage one - “service enablement”
	6.3 Stage two - “Service Integration”
	6.3.1 Implementing the block “ESB exploitation”
	6.3.2 Implementing the block “Advanced Services Adoption”

	6.4 Stage 3 - “process integration”
	6.4.1 Implementing the block “Business Services Exploitation”
	6.4.2 Implementing the block “ Business Process Orchestration”
	6.4.3 Implementing the block “Discovery and Dynamic Binding
	6.4.4 The end of the journey

	Chapter 7. SOA governance on z/OS
	7.1 What gets governed?
	7.2 Who governs?
	7.3 Aspects of SOA governance
	7.3.1 Service definition
	7.3.2 Service versioning and migration
	7.3.3 Service registries
	7.3.4 Service monitoring

	Chapter 8. SOA and z/OS QoS
	8.1 Overview
	8.2 Quality of Service on the System z platform and inside z/OS
	8.2.1 Scalability
	8.2.2 Availability
	8.2.3 Reliability
	8.2.4 Security
	8.2.5 Total Cost of Ownership (TCO)

	8.3 Quality of Service of the SOA building blocks
	8.3.1 Scalability
	8.3.2 Availability
	8.3.3 Reliability
	8.3.4 Security
	8.3.5 Total cost of ownership

	8.4 Quality of service of the SOA architecture
	8.5 QoS and our implementation scenarios
	8.5.1 Scalability in our implementation scenarios
	8.5.2 Availability in our implementation scenarios
	8.5.3 Reliability in our implementation scenarios
	8.5.4 Security in our implementation scenarios
	8.5.5 TCO in our implementation scenarios

	8.6 Managing QoS with SOA on z/OS
	8.7 Conclusion

	Chapter 9. SOA enablement case studies
	9.1 SOA enablement case study 1: IBM Life Insurance Solution Showcase
	9.1.1 SOA in an insurance industry context
	9.1.2 The business problem
	9.1.3 Enterprise view
	9.1.4 Application architecture
	9.1.5 Operational model
	9.1.6 Infrastructure (technical) architecture
	9.1.7 SOA tooling
	9.1.8 Conclusion

	9.2 Case study 2: A bank deployed a large-scale SOA solution based on Web services
	9.2.1 Business driver
	9.2.2 Design objectives
	9.2.3 A typical business flow
	9.2.4 Architectural decisions
	9.2.5 Solution overview
	9.2.6 Key challenges in the Services Provider layer

	Related publications
	IBM Redbooks
	Other publications
	Online resources
	How to get IBM Redbooks
	Help from IBM

	Index
	Back cover

