DECISION-MAKING UNDER UNCERTAINTY AND RISK

Business Decision Making

Nikola Kadoić

AGENDA

- 2 groups of decision-making methods
- Matrix of the payment
- Basic methods for decision making under uncertainty and risks

2 GROUPS OF DECISION-MAKING METHODS

Multiple criteria DM methods

Table of decision making

- Alternatives
- Criteria
- Consequences (Values)

An example od DM problem

		Work experience	Education	Interview	
P1		3 years	High	5	
P2		5 years	Secondary	6	
P3		Noexp	High	7	

DM under uncertanty and risks

Table of payments

- Alternatives
- Events (and probabilities)
- Payments

An example of DM problem

	It's rain	It isn't rain 🔥
Take the umbrella	(i)	8
Do not take the umbrella	(⊗ .	

Methods:

Ranking, evenswaps, Electra,
 Promethee, Topsis, AHP, ANP, SAW,
 (pairwise comparisons), Dex...

Methods:

 Laplace, Savage, Expected value, Waldo, Hurvisz, Decision tree...

RISKS => are known (INCERTAINTY => Pros-

- A Alternatives
- V Payments
- S Events and probabilities

		ı		
	S1	S2	S 3	 Sn
A1	V11	V12	V13	 V1n
A2	V21	V22	V23	 V2n
A3	V31	V32	V33	 V3n
		***	***	
Am	Vm1	Vm2	Vm3	 Vmn
M1		~		

起*1丁 LOSSES

BASIC METHODS: UNCERTAINTY AND RISKS

- Theoretical methods (<u>uncertainty</u>)
 - Max-max (Optimistic approach, Risking approach)
 - Max-min (Pesimistic approach, Wald criterion, safe-player)
 - Hurwicz criterion of the realism
 - Savage regret criterion
- Practical methods (<u>risk</u>)
 - Laplace criterion
 - · Expected value Criterian
 - Decision-making tree

~

.

BASIC METHODS: UNCERTAINTY AND RISKS

• **EXAMPLE**: Company X considers its expansion. There are several possible ways of the expansion. Also, one of the alternatives is status quo – not to do anything. There are three possible events in terms of the <u>market behaviour</u>: expansion, stagnation and recesion. In the matrix of the payment, there are the payments (profits and losses) that will be achieved if the company selects some option and any of the events appears (in thousands of euros)

^					_
1) (Exspansion	Stagnation	Recesion	
malytical		M	Men	<u>,4</u>	•
	Big company	200	50	-120	
2) .(Madium-sized c	90	120	-30	
qualitatie	Small company	40	30	20	
2	Status quo	0	0	0	
c .:	M_{Λ}				

foi

BASIC METHODS; UNCERTAINTY

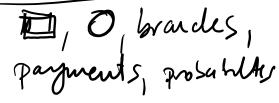
 $H_1 = \mathcal{L} \cdot Max_1 + (1 - \mathcal{L}) min_1$ $+ (1 - \mathcal{L}) min_1$ +

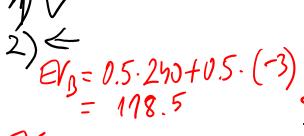
L=0.4

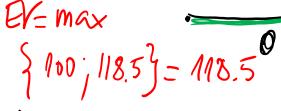
	E≿spansion	Stagnation	Recesion	min)	max	H
Big company	200	50	-120	-120	200	8
Medium-sized c.	90	120	-30	-30	120	30
Small company	(40)	30	20	20	40	28
Status quo	0	0	0	0	0	0
HP	200	120	20	SC	30	MSC

Matrix of regrets	Exspansion	Stagnation	Recesion	MAX
Big company	0	70	140	140
Medium-sized c.	110	0	50	110
Small company	160	90	2	160
Status quo	200	O	20	200
				MSC

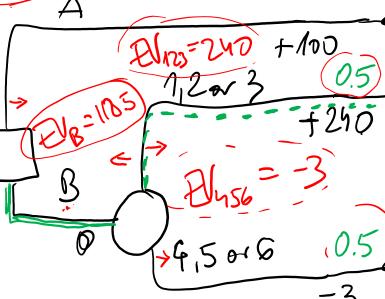
1) Maxmin
2) Maxmax
3) Hurrizs Chitor
of realian
L=tendonay
to take


BASIC METHODS: UNCERTAINTY AND RISKS (EVMSc= 0.1*90+0.5.120+0.4.(-36)=


	CCVMS	0.7	00 1 0.3	100 1 01		
	Ekspansion	Stagnation	Recesion	\ , , <u>]</u>	· · · /	
	1/3	1/3	1/3 .) Laplace	CEV	
→ (0.1	0.5	0.4			1
Big company	200	50	-120	43.3	-3	1
Medium-sized c.	90	120	-30	(60)	(57)	+
Small company	40	30	20	30	27	+
Status quo	0	0	0	0	0	
X				MSC	MSC	7
EV; =		· V:		1) Lapla	ce critice	u
Copecient		oplae sc=	1.200	+ 1 · 50- 2) Critera	t 3 · (-120) 4 of ex. value	- 43.3
e.:				2) Critical	1 of CX. vouce	•


= 1/2, = 0.1.200 + 0.4.50+0-J.-120=(-) BASIC METHODS: UNCERTAINT free-denats Deason = node of the decion **Ekspansion Stagnation** Recesion O = note of the event 0.5 Big company 200 -120 50 Crandles Medium-sized c. 90 120 -30 Small company 20 40 30 Status quo 0 gorshin: DT 200. (0+0+200) Yoke atree + Calculate The values BC Calculate EV for each branch Bouleful -120 MSC · first branch v · the branch that haves (3) optimal path www.FOI.unizg.hr

BASIC METHODS: UNCERTAINTY AND RISKS


- Decision free auts
- **EXAMPLE 2:** Game! Somebody offers you:
 - A: earn 100€ for not to do anything
 - B: you trow the a dice:
 - if you get numbers 1, 2 of 3, you will earn 240 €
 - If you get numbers or 6, you have to pay 3€

