
 1

7

Component-based Development Process and
Component Lifecycle

The process of component and component-based system development differs in many
significant ways from the “classical” development process of software systems. The
main difference is in the separation of the development process of components from the
development process of systems. This chapter begins from this premise and discusses its
implications. The generic lifecycle of component-based systems and the lifecycle of
components are presented first. The following different types of development processes
are then discussed in detail: architecture-driven component development, product-line
development and COTS-based development. These three types require different
approaches and the use of different techniques and methods in all phases of the
development process. The chapter describes these approaches, recommending the most
suitable - and appropriate techniques -in each case and the implications of their use.

Component-based Development Process and Component Lifecycle 1
7 Component-based Development Process and Component Lifecycle 2

7.1 Introduction... 2
7.2 Lifecycle Process Models for Software Systems.. 3
7.3 Component-based approach.. 4

7.3.1 Component-based system development process.. 7
7.3.2 Component assessment .. 11
7.3.2 Component development process .. 11

7.4 Different architectural approaches in component-based development 14
7.5 Case study in product-line development... 16
7.6 Conclusion .. 19
7.7 Questions & Assignments... 20

7.7.1 Questions... 20
7.7.2 Assignments.. 20

 2

7

Component-based Development Process and
Component Lifecycle

7.1 Introduction
For a successful development a technology only is not enough! Any slightly more
complex project requires management of different aspects that are beyond a technology.
Examples of such aspects are project planning, coordination between project
stakeholders, management of resources, organization of work, and similar. In a product
life-cycle (i.e. all phases in a product’s life) technologies are enablers to particular
technical solutions, but also catalysts for different development processes. These
processes may be result of particular business or market requirements. Indeed this is true
in the case of component-based development. Business and market requirements are
drivers of component-based approach. Component-based technologies enable distributed
development, parallel development, separation of the development process, increase
reusability, etc., which are solutions to the demands on short time-to-market, lower costs
or increased flexibility.

There exist many models for software (and systems) development processes and
life-cycles. Most of them are specified considering some specific (often non-technical)
goals, such as quality, predictability, dependability, or flexibility, and are often
independent of technology. Examples of such models are different sequential models
such as Waterfall or V model, or iterative modules such as spiral model, or different agile
methods, or standard and de-facto standards such as ISO 9000, or CMMI. These models
are usually specified in general terms and they require adjustments for particular projects.
Some development processes and life-cycle models have their origins in a technology or
in a particular approach. A very characteristic example is Object-Oriented Development
(OOD) which emprises both technologies and processes. RUP (Rational Unified Process)
has a clear influence of OOD.

Component-based software engineering, as a young discipline is still focused on
technology issues: modeling, system specifications and design, and implementation.
There is no established component-based development process. Yet many principles of
CBD have significant influence on the development and maintenance process and require
considerable modifications of standard development processes.

This chapter discusses specifics of component-based approach and its impact on
component-based development processes and we illustrate this by discussing adaptations
of a specific process model (waterfall model). In continuation we identify three different
types of component-based development processes: Architecture-driven component
development, Product-line development and COTS-based development. Finally we
presents a case study from industry which clearly shows a paradigm shift from
programming-dominated processes to requirements and component management, and
tests and verification activities.

 3

7.2 Lifecycle Process Models for Software Systems

Every product, including software products, has a lifecycle [ISO02]. Although lifecycles
of different products may be very different, they can be described by a set of phases or
stages that are common for all lifecycles. The phases represent the major product
lifecycle periods and they are related to the state of the product.

Figure 1 shows a frequently encountered example of products lifecycle phases
[ISO02]: concept, development, production, utilization and retirement.

Figure 1: Generic Product Lifecycle

Each phase consists of a number of activities. For example, during the concept phase
stakeholders’ needs are identified, development concepts identified, marketing and
development of the future product are explored and viable solutions are proposed. The
development phase comprises refinement of requirements, description of the solution and
construction specification, verification and validation of the product. In the production
phase the product is manufactured and certified for its operation. In the utilization phase
the product is used, supported and maintained. Finally, during the retirement phase the
product is stored, archived or disposed.

Software products have a slightly different lifecycle; for example the production phase
can be neglected as a separate phase as the production activities are considerably smaller
than other activities. Also, since software is easy to change (although the consequences of
a change may be severe and may require a lot of effort) it is often developed and released
in different versions. This allows concurrent operation and development. The model from
Rajlich and Bennett [Raj00] takes into consideration these characteristics, and defines the
software lifecycle slightly different from the product lifecycle model (see

Figure 2): The concept phase including the initial design and development is called
initial development. The production phase is omitted since it is assumed to be a part of a
development phase. The utilization phase including further development is actually a
series of evolution and servicing cycles. Finally the retirement phase is divided into
phase-out and closedown phase.

Figure 2: Software product lifecycle

Concept Development Production Utilization RetirementConcept Development Production Utilization Retirement

Initial
Development Close-downEvolution Servicing Phase-outEvolutionEvolution ServicingServicing

operation

Initial
Development Close-downEvolution Servicing Phase-outEvolutionEvolution ServicingServicing

operation

 4

During the initial development phase the first functioning version of the product is
developed from scratch to satisfy initial requirements. During the evolution phase the
quality and functionality of the product is iteratively extended. At certain intervals new
versions of the product are released and delivered to the customers. In the servicing phase
only minor defects in the product are repaired. The phase-out phase the product is still
used but not serviced any more. Finally during the close-down phase the product is
withdrawn from the market: either replaced by another product or disposed.

Very often the development organizations perform the same activities in the initial
development phase as in each evolution cycle. Typically an existing software product
will evolve into its next version by repeating the same sequence of phases, although
probably with different emphasis. These activities grouped in define a software
development lifecycle [KRU96].

Different models of the software development lifecycle have been proposed and
exploit in software engineering [SOM04]. These models have shown strengthens and
weakness in governing the activities that are required for a successful development and
use of products. We can distinguish two main groups of models: Sequential and
evolutionary. The sequential models define a sequence of activities in which one activity
follow after a completion of the previous one. Evolutionary models allow performing of
several activities in parallel without requirements on a stringent completion of one
activity to be able to start with another one. In a sequential model phases and activities
are the same or strongly correlated. In evolutionary models the phases are related to
availability of the system to provide services (for example achieved through development
iterations) and many activities are present in a particular phase. Well known examples of
sequential models are waterfall model, or V model. Examples of evolutionary models,
categorized as iterative and incremental development models, are spiral model, Rational
Unified Process model, or different agile models. For more detailed descriptions of these
models, their advantages and disadvantages see [SOM04].

Not all software development lifecycle models are suitable for all types of software
systems. Usually large systems which include many stakeholders and which development
lasts a long period prefer using sequential models. The systems which use new
technologies, which are smaller, and to which the time-to market is important, usually
explore evolutionary models which are more flexible and which can show some results
much earlier than sequential models.

How well these models suit the development of component-based systems? Can
they be applied directly or is some adoption to the principles of component-based
approach required? Let us discuss that in the following sections.

7.3 Component-based approach
The main idea of the component-based approach is building systems from already
existing components. This assumption has several consequences for the system lifecycle;
• Separation of the development process. The development processes of component-

based systems are separated from development processes of the components; the
components should already have been developed and possibly have been used in
other products when the system development process starts.

• A new process: Component Assessment. A new, possibly separated process, finding
and evaluating the components will appear. Component assessment (finding and

 5

evaluation) can be a part of the main process, but many advantages are gained if the
process is performed separately – the result of the process is a repository of
components that includes components’ specifications, descriptions, documented tests,
and the executable components themselves.

• Changes in the activities in the development processes. The activities in the
component-based development processes will be different from the activities in non-
component-based approach; for the system-level process the emphasis will be on
finding the proper components and verifying them, and for the component-level
process, design for reuse will be the main concern.

Let us discuss these differences in more detail. To illustrate the specifics of the
component-based development processes we shall use the Waterfall model - the simplest
one – but the illustration can be relatively simply be applied for other development
processes. Figure 3 shows the main activities of the Waterfall model: Requirements
Specification, Analysis & Design, Implementation, Test, Release and Maintenance. The
primary idea of the component-based approach is to (re)use the existing components
instead of implementing them whenever possible. For this reason already in the
requirements and design phases the availability of existing components must be
considered. The implementation phase will include less coding (in an ideal case no
coding) for implementing functions, but selecting the available components, and if
necessary adapting them to the requirements and design specification. The required
functionality that is not provided by any existing component must be implemented, and in
a component-based approach the relevant stakeholders (for example the project manager,
the organization management, system architects) will consider whether these new
functions will be implemented in the form of new components that can be reused later.
An inevitable part of the implementation of a component-based system is the glue-code
which connects the components, enables their intercommunication and if necessary
solves possible mismatching. In an ideal case that includes a full integration tool support,
the glue code is generating automatically.

Figure 3 still shows a simplified and an idealized process. Its assumption is that
the components selected and used are sufficiently close to the units identified in the
design process, so that the selection and adaptation process require (significantly) less
effort than the components implementation. Further, the figure shows only the process
related to the system development – not to the supporting processes: Assessment of the
components and component-development process (actually, there might be many parallel
component development processes). These processes are depicted on Figure 4.

 6

Figure 3: Component-based Waterfall Software product lifecycle

Figure 4: Parallel processes of component-based development

Requirements

Design

Test

Release

Maintenance

Implementation

Integration

Requirements

Design

Test

Release

Maintenance

Implementation

Integration

Requirements

Design

Test

Release

Maintenance

Implementation

Integration

Requirements

Design

Test

Release

Maintenance

Implementation

Integration

Verify

Store

System Development

Component
Assessment

Component Development

Select

Find

Requirements

Design

Test

Release

Maintenance

Implementation

Integration

Requirements

Design

Test

Release

Maintenance

Implementation

Integration

Requirements

Design

Test

Release

Maintenance

Implementation

Integration

Requirements

Design

Test

Release

Maintenance

Implementation

Integration

Verify

Store

System Development

Component
Assessment

Component Development

Select

Find

Requirements

Design

Test

Release

Maintenance

Implementation

Integration

Requirements

Design

Test

Release

Maintenance

Implementation

Integration

Requirements

Design

Test

Release

Maintenance

Implementation

Integration

Requirements

Design

Test

Release

Maintenance

Implementation

Integration

Requirements

Design

Test

Release

Maintenance

Implementation

Integration

Requirements

Design

Test

Release

Maintenance

Implementation

Integration

Requirements

Design

Test

Release

Maintenance

Implementation

Integration

Requirements

Design

Test

Release

Maintenance

Implementation

Integration

Verify

Store

System Development

Component
Assessment

Component Development

Select

Find

Requirements

Design

Glue-coding Test

Release

Maintenance

Selection

Adaptation

Implementation

Implementation of
new components IntegrationSelection of the

component
candidates

Selection

Adaptation

Component
updates

Components
maintenance

Requirements

Design

Glue-coding Test

Release

Maintenance

Selection

Adaptation

Implementation

Implementation of
new components IntegrationSelection of the

component
candidates

Selection

Adaptation

Component
updates

Components
maintenance

 7

The processes shown on Figure 4 can be performed independently of each other, but
certainly there are activities that bridges these processes: Which components will be a
subject for searching, what type of verification is required, which verified components
exist – these are similar decisions as staring points of the component assessments which
originate from the system development process. Similarly, the questions such as which
functions will be provided by the components being developed, which requirements will
be posed on the components, are related to the systems requirements. How these
“crosscutting” activities will be implemented, and how these processes will be integrated,
depends on type of component-based process. This will be discussed in the section 7.4.

First, we shall discuss the activities of each process, and some of these activities
in will be presented in more details the following chapters.

7.3.1 Component-based system development process
The main objective of the component-based system development process is the of system
construction from (existing) components. This basic characteristic has impact on all
phases of the development.

Requirements Phase
In this phase the requirements are collected, elicited, analysed and specified. In a non-
component-based approach a requirements specification is an input for development of
the system. In a component-based approach this is somewhat different; the requirements
specification will also of availability of the existing components. This approach can be
compared with obtaining a suit by order from a tailor who will make the suit according to
our wish, or by buying a suit from a shop. In the second case we could not get any suit we
wish, but take one available that suits most to our wishes. In the same way the
requirements should correlate to the assortment of the components, i.e. the requirements
specification is not only input to the further development, but also a result of the design
and implementation decisions. More details about component-based requirements you
can find in chapter (Requirements management).

Analysis & Design Phase
The design phase of component-based systems follows the same pattern as a design phase
of software in general; it starts with a system analysis and a conceptual design providing
the system overall architecture and continues with the detailed design. From the system
architecture, the architectural components will be identified. These components are not
necessary the same as the implementation components but they should be identified and
specified in a detailed design as assemblies of the existing components. Again, as in the
requirements processing a tradeoff between desired design and a possible design using
the existing components must be analyzed. In addition to this, there will be many
assumptions that must be taken into consideration: For example, it must be decided which
component model(s) will be used, which will have impact on the architectural framework
as well as on certain system quality properties.

Implementation Phase
As seen in Figure 3, the implementation activities only partially consist of coding –
actually the more pure component-based approach is achieved, the less coding will be

 8

present. The main emphasis is put on component selection and its integration into the
system. This process can however require additional efforts. First the selection process
should ensure that appropriate components have been selected with respect to their
functional and extra-functional properties. This would require verification of the
component specification, or testing of some of the component’s properties that are
important but not documented. Second, it is a well known fact [Wal02] that even if
isolated components function correct, an assembly of them may fail, due to invisible
dependencies and relationships between them, such as shared data shared resources. This
requires that components integrated in assemblies are tested before integrated into the
system.

The adaptation of components may be required to avoid architectural mismatches
(such as incompatible interfaces), or to ensure particular properties of the components or
the system. There are several known adaptation techniques:
• Parameterized Interface. Parameterized interface makes it possible to change the

component properties by specifying parameters that are the parts of the component
interface. These parameters can be used in different phases of the component life-
cycle, depending on the component model – it can be a building parameter, or a
deployment parameter or an execution parameter. An example of such parameter is a
memory allocation, or frequency of execution, or a number of input data to be
received in a row, or similar.

• Wrapper. A wrapper is a special type of a glue-code that encapsulates a component
and provides a new interface that either restrict or extend the original interface, or to
add or ensure particular properties.

• Adapter. An adapter is a glue code that modifies (‘adapts’) the component interface
to make it compatible with the interface of another component. The intention of an
adapter is not to hide or modify the component properties, but to adjust the interfaces.

Integration Phase
In a non-component-based development process the integration phase includes activities
that build the systems from the incoming parts.1 The integration phase does not include
“creative” activities in the sense of creating new functions by production of new code,
and for this reason there is requirement to automate and rationalise the process as much
as possible. The phase is however very important as it is the “moment of truth”; many
problems become visible due to architectural mismatches of the incoming components, or
due to unwanted behaviour of different extra-functional properties on the system level.
That is why the integration phase is tightly connected to the system test phase in which
the system functions and extra-functional properties are verified.
 In a component-based approach many integration parameters are determined by
the choice of component technology, and component selection. The component
technology standardises the architectural frameworks, reuses architectural patterns, and
usually provides means for efficient integration. For this reason the integration process
should be more straightforward and less error-prone. This holds when considering
architectural mismatch of the components, but the verification of extra-functional

1 In some literature these parts as named as components. Since such “components” to not comply with our
definitions of components (i.e. they do not confirm to a component model, we are not referring to them as
components.

 9

properties (in particular emerging properties, i.e. properties that are not visible on
component level, but exist on the system level), remains complex and in many cases as
difficult as for non-component-based systems.
 Since system functions are not exclusively realised by components alone but often
by a set of components, to verify these functions the components must be integrated
before the entire system is built. For this reason the integration phase for component-
based systems development process is spreading to earlier phases: implementation,
design and even in the requirements phase. Fortunately in most component-based
technologies the component integration is supported by tools, which makes the
integration process simpler and more efficient.

Test Phase
During the test phase the system is being verified against the system specification
(including both functional and extra-functional properties). In the waterfall model the test
is performed after the system integrations, but this practice has exhibited many
disadvantages. The more realistic is modified Waterfall model in which the test is
performed for software units (such a variant is called V model). In CBD a need for
component verification is apparent since the system developers do not necessary have a
control on the component quality, component functions, etc., as the component could
have been developed in another project with other purposes. The tests performed in
isolated components are usually not enough since their behaviour can be different in the
assemblies than performing in another environment [Wal02]. The component test can
actually be performed many times – by assessment, when integrated in an assembly that
provides a particular function, and when deployed (integrated) into the systems.

 10

 Figure 5: Integration and test in several phases of the CBD process

Release Phase
The release phase includes packaging of the software in forms suitable for delivery and
installation. The CBD release phase is not significantly different from a “classical”
integration.

Maintenance Phase
In everyday life one of the patterns of products maintenance is: Repair the product
support by replacing malfunctioning component. The objective of component-based
approach for software is similar: A system should be maintained by replacement of
components. The characteristics of physical (hardware) components is however different
from software components. While hardware components can be exposed to a process of
degradation in functionality and quality, software components do not change. In principle
there should be no need for their change. However the experience shows the opposite:
The well known [MML96] law says: "The entropy of a system increases with time unless
specific work is executed to maintain or reduce it.” – i.e. the software system will
degrade if not maintained. The reason is not the degradation of the software itself but
because of the changes of the environment the system runs in. Even if the system
functions properly, as time goes it has to be maintained. The approach of CBD is to
provide maintenance by replacing old components by new components or my adding new
components into the systems. The paradigm of the maintenance process is similar to this
for the development: Find a proper component, test it, adopt it if necessary, and integrate
it into the system (see Figure 5).

Requirements

Design

Glue-coding

Test

Release

Maintenance

Selection

Adaptation

Implementation

Implementation of
new components

Integration
Selection of the

component
candidates

Selection

Adaptation

Component
updates

Components
maintenance

Components
Integration Components

Integration

Components and
Assemblies test Components and

Assemblies test

Requirements

Design

Glue-coding

Test

Release

Maintenance

Selection

Adaptation

Implementation

Implementation of
new components

Integration
Selection of the

component
candidates

Selection

Adaptation

Component
updates

Components
maintenance

Components
Integration Components

Integration

Components and
Assemblies test Components and

Assemblies test

 11

7.3.2 Component assessment
While development of component-based systems significantly decreases the detailed
design and implementation efforts during the system development, it requires additional
efforts in other activities. For example instead of implementing required functions, the
developers have to find components that provide such functionality. Further they must
verify that the selected components i) indeed provide the desired (or almost desired)
functionality, and ii) that the components can successfully be integrated with other
components. The consequence can be that not the best components (i.e. components that
provide the “best functions”) can be selected, but the components that fit together.

To make the system development process efficient (i.e. to achieve better time-to-
market) many assessment activities can be performed independently and separately from
the system development.

A generic assessment process includes the following activities:

• Find – From an “infinite” component space find the components that might provide

the required functionality. This functionality can be a part of the system being
developed, or of a system (or systems) plan to be developed.

• Select – Select is a refinement of the finding procedure. Between the components
candidates found, select a component that is most suitable for given requirements and
constraints.

• Verify – Inevitable part of the component selection is the component verification.
The first level of verification includes testing functional and certain extra-functional
properties of a component in isolation. A second develop of verification includes
testing the component in combination with other components integrated in an
assembly.

• Store – when a component is assumed to be a good candidate for the current and/or
future applications, it should be stored in a component repository. The repository will
include not only the component itself, but also additional specification (metadata) that
can be useful in further exploitation o the component. Example of such data is
measured results of component performance, known problems, response time, the
tests and tests results and similar

These activities in the component assessment process are not necessary performed in the
order as shown on Figure 5. Also depending on different architectural approaches (see
section 7.4) some activities will be more important and will require more efforts, while
some other will be very small or non-existing. For example, if a company uses only
internally developed components, the “find” and “store” activity will not be necessary as
the components would be stored in internal repositories.

7.3.2 Component development process
The component development process is in many respects similar to system development;
requirements must be captured, analysed and defined, the component must be designed,
implemented, verified, validated and delivered. When building a new component the
developers will reuse other components and will use similar procedures of component
evaluation as for system development. There is however a significant difference:

 12

Components are built to be part of some systems, preferably many. The components are
intended for reuse in different products, many of them yet to be designed. The
consequences of these facts are the following:

• There is greater difficulty in managing requirements;
• Greater efforts are needed to develop reusable units;
• Greater efforts are needed for providing component specifications and additional

material that help developers/consumers of the components.

We highlight here the specific characteristics of activities of a component development
and maintenance process.

Requirements Phase
Requirements specification and analysis is a combination of a top-down and bottom-up
process. The requirements elicitation should be the result of the requirements
specification on the system level. However, since the components are built also for
future, not yet existing, or even not planned systems, the system requirements are not
necessary identified or even they do not exist. For this reason the process of capturing
and identifying requirements is more complex, it should address ranges of requirements
and the possible reusability. Reusability is related to generality, thus the generally of the
components should be addressed explicitly.

Analysis & Design Phase
The input to the design phase in the component development process comes from system
design, system constraints and system concerns. Since such systems do not necessary
exist, or even not yet planned, the component designer many assumptions about the
system must be taken. Many assumptions and constraints will be determined a selected
component technology, for example component interactions, certain solutions built in the
technology, assumptions of the system resources and similar. For this reason, the most
likely is that at that the design time (if not already in the earlier phases) a component
model and a component technology that implements that model must be chosen.

For a component to be reusable, it must be designed in a more general way than a
component tailored for a unique situation. Components intended to be reused require
adaptability. This will increase the size and complexity of the components. At the same
time they must be concrete and simple enough to serve a particular requirement in an
efficient way. This requires much more design and development effort. According to
some experience, developing a reusable component requires three to four times more
resources than developing a component which serves a particular purpose [Szy98].

Implementation Phase
Implementation of components is determined very much by the component technology
selected. Component technology provides support in programming languages, automation
of component compositions, can include many services and provide many solutions that
are important for the application domain. Good examples of such support are data
transaction, database management, security, or interoperability support for distributed

 13

software systems provided by component technologies .NET, J2EE, or COM+. Object-
oriented languages are suitable for implementation of components since they use similar
concept as CBD does, and since they contain elements that can be efficiently used for
implementation of components. Examples of these elements are Interface in Java or
virtual classes in C++, directly applicable for specification of component interfaces.

Integration Phase
While the component-development process does not include system integration activity,
it is built to be easy integrated into a system. For this reason integration consideration
must be in focus. An integration of component, if it includes other components, is also
possible. Further integration with other components in an assembly, in order to provide a
particular service, or generate a unit of test, is also possible. Actually the integration
activities may be performed frequently – for example for test purposes. Usually
component technology provides good support for components integration, and integration
is being performed on daily basis.

Test Phase
Test activates are of particular importance because of two reasons. (i) The component
should be very carefully tested since its usage and environment context is not obvious.
Not specific conditions should be taken fro grated, but the extensive tests and different
techniques of verification should be performed. (ii) It is highly desirable that the tests and
test results are documented and delivered together with the component to the system
developers.

Release Phase
Release and delivery of the components are inevitable part of the component
development process. The components or assemblies of components are packaged into
packages suitable for distribution and installation. The package will not only include the
executable components, but also additional information and assets (specifications of
different properties, additional documentation, test procedures and test results, etc.).

Maintenance Phase
The specific part of maintenance is a relation components-system. If a bug in a
component is fixed, the question is, to which systems a new version of the components
should be delivered. Who will be responsible for the update: the system of the component
producer? Further, there is also a questions who will be responsible for component
maintenance; is this responsibility if the component producer, or the system producer? Is
it supposed that the component producers have obligation to fix the bugs and support its
update in (possibly) the numerous systems, or that they can provide support with
additional payment, or they do not provide any support at all. Even more difficult
problems can be related to so called “blame analysis”. The problem is related to a
infestation of a fault and the origin of the fault itself. An error can be detected in one
component, but the reason can be placed in another. For example due to a high frequency
of input in component A, the component A required more CPU time, so that component
B does not complete its execution during the interval assumed by Component C which
provides a time-out error, and a user of the component C get impression that an answer

 14

from Component C was as delivered. The first analysis shows that he problem is in the
component C, then B, then A, and finally input to A. The questions is who is providing
that analysis if there the producers of components A, B and C are not the same. Such
situations can be regulated by contracts between the producers and consumers of the
components, but this requires additional efforts, and in many cases it is not possible for
many different reasons.
 These examples show that maintenance activities can be much more extensive
that expected. For this reason it is important that the component producers have build up
a strategy how to perform the maintenance and take corresponding action to ensure the
realisation of this strategy. For example, the component producers might decide to
provide maintenance support and then it is important that they reproduce the context in
with the error was manifested.

7.4 Different architectural approaches in component-based
development

The industrial practice has established several approaches in using component-based
development. These approaches, while possibly similar in using component technology,
can have quite different processes, and different solutions on the architectural level. Let
us look to three approaches, all component-based, but with quite different assumptions,
goals and consequently processes.

• Architecture-driven component development
• Product-line development
• COTS-based development.

Architect-driven component development, described in more details in [Crn03], uses a
top-down approach; components are identified as architectural elements and as a means
to achieve a good design. Components are not primary developed for reuse, but to fit into
the specified architectures. Component-based technologies are used, but because of
extensive support of component technology in modelling and specification, in easier
implementations, in getting already existing serviced provide from the component
technology. The main characteristic of these components is composability, while
reusability and time-to-market issues are of less concern. The parallel development
processes are (shown on Figure 4) are reduced to two semi-parallel processes – system
development and component development (see figure 6).

 15

Figure 6. Architecture-driven component development process

Product-line development, which goal is to enable efficient development of many
variants of product, or family of products has a strategy to achieve a large commercial
diversity (i.e. producing many variants and many models of products) with a minimal
technical diversity at minimal costs [COPA]. They are heavily architecture-driven, as the
architectural solution should provide the most important characteristics of the systems.
Within a given architecture (so called reference architecture) component-based approach
places a crucial role – it enables reuse of components, and efficient integration process.
So here composability, reusability and time-to-market are equally important. What is
characteristic for product line is that the architectural solutions have direct impact on
component model. The component model must comply with the pre-defined reference
architecture. Indeed in practice we can see that many companies have developed their
own component model that suits best to the specified architecture. A second
characteristic of product-line architecture (as a result of the time-to-market requirement)
is parallelism of component development process and product development process and a
combination of a top-down and bottom-up procedures. Referring to figure 5 we can see
that all three processes (system development, component assessment and component
development) exist, but somewhat changed.

COTS-based development, assumes component development process completely
separately developed from system development. The strongest concern is time.-to-market
from the component user point of view, and reusability from the component developer
point of view. While COTS approach gives and instant value of new functionality, (a lack
of) composability may cause a problem if the COTS components do not comply to a
component model, if the semantics of the components is not specified and if different
properties of the components are not properly and adequately documented. For the
COTS-based development the component assessment plays a much more important role
than in the previous two approaches. Figure 5 represents the COTS-based development
best of al three approaches discussed here.

Requirements

Design

Test

Release

Maintenance

Implementation

Integration

System Development

Requirements

Design

Test

Release

Maintenance

Implementation

Integration

Requirements

Design

Test

Release

Maintenance

Implementation

Integration

Requirements

Design

Test

Release

Maintenance

Implementation

Integration

Component Development

Requirements

Design

Test

Release

Maintenance

Implementation

Integration

System Development

Requirements

Design

Test

Release

Maintenance

Implementation

Integration

Requirements

Design

Test

Release

Maintenance

Implementation

Integration

Requirements

Design

Test

Release

Maintenance

Implementation

Integration

Component Development

Requirements

Design

Test

Release

Maintenance

Implementation

Integration

Requirements

Design

Test

Release

Maintenance

Implementation

Integration

Requirements

Design

Test

Release

Maintenance

Implementation

Integration

Requirements

Design

Test

Release

Maintenance

Implementation

Integration

Requirements

Design

Test

Release

Maintenance

Implementation

Integration

Requirements

Design

Test

Release

Maintenance

Implementation

Integration

Component Development

 16

Figure 7. Product-line development

Which of these approaches are best, or most CBD-specific? There is no unique answer.
While COTS-based development looks like the most inherited to CBD approach, and by
this the most promising, the practice in last five-six years has not shown a big success; on
the opposite, after a string enthusiasm on the market (and research), the COTS
components market has decreased and does not show revolutionary improvement. One of
the reasons for that is that it is difficult to achieve reusability by being very general, and
at the same time effective, simple and at the same time provide attractive functionality.
Further a problem of trustworthiness (who can guarantee that the component is correct?),
component verification and certification is not yet sold. Product line approach has been
successful in many domains and in a combination with CBD-approach is a promising
approach. Possible threat are increasing costs for development and maintenance of the
component technologies developed internally, and that include compilers, debuggers, and
in general integrated development environments. In some cases the internally developed
component technologies are replaced by the widely-used general-purpose component
technologies, while keeping the overall product-line approach.

7.5 Case study in product-line development
To illustrate a product-line architecture process let us look a process model used in a
large international company in consumer electronics. The development divisions of the
company are placed in four different countries and they produce numerous products with
different variants and models. The company has adopted component-based development
using product-line architecture. The component model is internally developed and most
of the tools are internally developed. The reason for that are the specific requirements of
the domain: low resource usage, high availability, and soft real-time requirements.

Requirements

Design

Test

Release

Maintenance

Implementation

Integration

Requirements

Design

Test

Release

Maintenance

Implementation

Integration

Requirements

Design

Test

Release

Maintenance

Implementation

Integration

Requirements

Design

Test

Release

Maintenance

Implementation

Integration

System Development

Component
Assessment

Component Development

Select

Store

Verify

Requirements

Design

Test

Release

Maintenance

Implementation

Integration

Requirements

Design

Test

Release

Maintenance

Implementation

Integration

Requirements

Design

Test

Release

Maintenance

Implementation

Integration

Requirements

Design

Test

Release

Maintenance

Implementation

Integration

Requirements

Design

Test

Release

Maintenance

Implementation

Integration

Requirements

Design

Test

Release

Maintenance

Implementation

Integration

Requirements

Design

Test

Release

Maintenance

Implementation

Integration

Requirements

Design

Test

Release

Maintenance

Implementation

Integration

Requirements

Design

Test

Release

Maintenance

Implementation

Integration

Requirements

Design

Test

Release

Maintenance

Implementation

Integration

System Development

Component
Assessment

Component Development

Select

Store

Verify

 17

The component model follows the basic principles of CBSE: The components are
specified by interfaces which distinguish “require” from “provide” interfaces. In addition
to functional specification, the interface includes additional information; the interaction
protocols, the timeliness properties, and the memory usage. The component model
enables a smooth evolution of the components as it allows existence of multiple
interfaces. The model has a specific characteristic; it allows a hierarchical compositions:
a composite component is treated as a standard component and in can further be
integrated in another component. The components are also developed internally, but their
development is separated from the development of the products.

The product-line architecture identifies the basic architectural framework. The
product architecture is a layered architecture which includes (i) operating system, (ii) the
component framework which is an intermediate level between domain-specific services
and operating, (iii) core components which are included in all product variants, and (iv)
application components that usually are different for different product variants. See
Figure 8. Complementary to this horizontal layering there is a vertical structuring in form
of subsystems. Subsystems are also related to the organizational structures; they are
responsible for development and maintenance of particular components.

Figure 8. Product Software Architecture

In the overall process there area three sets of the independent parallel processes: (i) An
overall architecture and platform development process responsible for delivering new
platforms and basic components, (ii) Subsystem development processes which deliver a
set of components that provide different services, and (iii) the product development
process which is basically an integration process. This process arrangement makes it
possible to deliver new products every six months, while the development of subsystem
components takes typically between 12 and 18 moths. The specifics of these projects are
that all deliverables have the same form. A deliverable is a software package defined as a
component. The overall process that includes parallel development projects which
deliverables are components and products is shown on Figure 9. The development
processes in our case is manly of an evolutionary model. The platform, the subsystems

Operating system

Component execution platform

Core components

application components

Operating system

Component execution platform

Core components

application components

 18

and the products are developed in several iterations until the desired functionality and
quality is achieved. This requires synchronizations of iterations.

Figure 9. Products and components development processes

Although the overall development and production is successful, the company

meets several challenges. The most serious problem is late discovery of errors: The
causes of errors are interface or architectural mismatches or insufficient specifications of
semantics of the components. Also the problems related to encapsulation of a service in
components often occur; due to functional overlaps, or some requirements that affect the
architecture, it is difficult to decide in which components a particular function will be
implemented. All these problems point out that it is difficult to perform the processes
completely independently; negotiation between different subsystems and agreements in
many technical details between different teams are necessary. For these reasons
coordination is necessary between development projects developing components and
products. This reflects to the project and company organization. Figure 10 the overall
organization of the projects. The following stakeholders have a special role in the
projects:
• The system architect and management have overall responsibilities for requirements,

policies, product line architecture, products visions, and long term goals.
• The project architect has a responsibility for the overall project which results in a line

of products. He/she coordinates the architectural design of the product family and
subsystems.

Reference architecture development

Subsystems development

Product development

Reference architecture development

Subsystems development

Product development

 19

• The test and quality-assurance (QA) managers have similar role in their domains: to
ensure coordination and compatibility of tests and quality processes.

• The subsystem architects provide with the designs of their subsystems and coordinate
the design decisions with other subsystems.

• Each subsystem has a test team and a QA manager which responsibility is the quality
of the delivered subsystem components.

• The integration team which work on the delivery projects is represented by a product
architect QA and test managers who coordinate the activities with other projects.

We can observe that the project teams have many “non-productive” stakeholders. This

is in line of the component-based approach – more efforts must be put on overall
architecture and test, and less on the implementation itself.

Figure 10. The overall project organization

7.6 Conclusion
In this chapter we have described different phases of component-based system life cycle.
These phases are described in a frame of a particular process model, but similar
principles are valid for any other development processes. The main characteristic of
component-base development process is a separation (and parallelization) of system
development from component development. This separation has a consequence on other
activities: Programming issues (low-level design, coding) are less emphasized, while
verification processes and infrastructural management requires significantly more efforts.

Project Manager
Project Architect
Test Manager
QA Manager

System Architect
Manager

Subsystem Project Manager
Subsystem Architect
Subsystem Test Manager
QA Subsystem Manager

Designers
Developers
Testers

Product Project Manager
Product Architect
Product Test Manager
QA Subsystem Manager
Product Validation Manager

Integrators
Testers

Project Manager
Project Architect
Test Manager
QA Manager

System Architect
Manager

Subsystem Project Manager
Subsystem Architect
Subsystem Test Manager
QA Subsystem Manager

Designers
Developers
Testers

Product Project Manager
Product Architect
Product Test Manager
QA Subsystem Manager
Product Validation Manager

Integrators
Testers

 20

We have seen that a component-based approach does not only require different expertise
but also organizational changes in an enterprise.

7.7 Questions & Assignments

7.7.1 Questions

• Component-based approach decreases lead development time of systems, and enables

shorter time to market. Does is however decreases overall efforts “embedded” into a
products?

• Which activities require more efforts, and which less in a component-based
development? Are these efforts equally distributed for development of systems and
development of components?

• What are the main differences in development of components in product-line
architecture, from COTS-based development.

7.7.2 Assignments

Illustrate the development processes when using another development model: Example

a) V model
b) Incremental model
c) an agile approach.

Describe the processes separately for system development and for components
development.

References

[ISO02] ISO/IEC 15288, System Engineering - System Life Cycle Processes, First

Edition, ISO/IEC, 2002
[KRU96] Kruchten, Philippe. A Rational Development Process, Crosstalk, July 1996

[Crn2003] I. Crnkovic and M. Larsson, CBSE – Building Reliable Component-

 based Systems, XXX, Artech House, 2003

[MML96] M M Lehman, Feedback in the Software Evolution Process, Keynote

Address, CSR Eleventh Annual Workshop on Software Evolution: Models
and Metrics. Dublin, 7 - 9th Sept. 1994, Workshop Proc., Information and
Software Technology, sp. is. on Software Maintenance, v. 38, n. 11, 1996,
Elsevier, 1996, pp. 681 - 686

[Raj00] Rajlich, Bennett. A Staged Model for the Software Life Cycle. IEEE

Computer, July 2000

 21

[SOM04] Ian Sommerville, Software Engineering, 7th Edition, Addison Wesley; May
10, 2004

[Szy98] Szyperski C., Component Software Beyond Object-Oriented Programming,
Addison-Wesley, 1998.

[Wal02] Kurt Wallnau, “Dispelling the Myth of Component Evaluation” in Ivica
Crnkovic and Magnus Larsson (editors), “Building Reliable Component-
Based Software Systems”, Artech House Publisher, 2002

