
A Classification Framework forA Classification Framework for
Component Models

Ivica Crnkovic, Séverine Sentilles,
Aneta Vulgarakis MichelAneta Vulgarakis, Michel

Chaudron

What is component?What is component?
• The component case

– Many definitions
– Some acknowledge ones:

• software component is a unit of composition with contractually
ifi d i t f d t t d d i l A ftspecified interfaces and context dependencies only. A software

component can be deployed independently and is subject to
composition by third parties.

Szyperskiyp

• A software component is a software element that conforms to a
component model and can be independently deployed and composed

ith t difi ti di t iti t d dwithout modification according to a composition standard
Heineman and Councill

Intuitive perception may be quite different at different levels (model– Intuitive perception may be quite different at different levels (model,
implementation, run-time)

8-Apr-09 2

Different solutionsDifferent solutions

• A plethora of CB models (with many different
characteristics)

A

C1
wcet1
f1

A

C2
wcet2
f2

Input
ports

Output
ports

AUTOSAR MS COMAUTOSAR
BIP
COMDES
CCA

OpenCom
OSGi PIN
PECOS

<<component>> <<component>>

Corba CM
EJBFractal
KOALA

ROBOCOP
RUBUS
SaveCCM

8-Apr-09 3

Client Server

IdenticalItf
KobrA SOFA 2.0

QuestionsQuestions
– What is common to component models?p

– It is possible to identify common principles and common
f t ?features?

– Is it possible to utilize/instantiate these principles forIs it possible to utilize/instantiate these principles for
particular component models in particular domains?

I h d di f h b i f• Increase the understanding of the basic concepts of
component models

• Easier differentiate component models according to• Easier differentiate component models according to
several properties

8-Apr-09 ICATSarajevo - 2007-10-29 4

GoalGoal

• Propose a classification framework for
component modelsp
– Defining categories
– Grouping characteristicsGrouping characteristics
– Illustrating its use by providing a survey of a

number of component modelsnumber of component models
– (Analysis of the data resulting)

8-Apr-09 5

Definitions:
Software Component – Component Model

Definition:Definition:
• A Software Component is a software building block that conforms to

a component model.
• A Component Model defines standards for

– (i) properties that individual components must satisfy and
– (ii) methods, and possibly mechanisms, for composing components.() p y p g p

8-Apr-09 6

ClassificationClassification
• How to describe (i) Commonalities, (ii) Differences?
• Different approaches

– Specification of Meta model
List of characteristics– List of characteristics

– Identification of categories and their characteristics

• Component Specification
C = <{Interfaces}, {Properties}>

C t C iti• Component Composition:
C = C1 ⊕ C2

Interaction (Interface composition): I(C) = I(C1) ⊕ I(C2)Interaction (Interface composition): I(C) I(C1) ⊕ I(C2)

Property composition: Pi(C) = Pi(C1) ⊕ Pi(C2)
• Component Lifecyclep y

8-Apr-09 7

The Classification Framework -
Categories

EFP

• Lifecycle. The lifecycle dimension identifies the support
provided (explicitly or implicitly) by the component model,
in certain points of a lifecycle of components or
component-based systems. component based systems.

• Constructs. The constructs dimension identifies
(i) the component interface used for the interaction with

th t d t l i t dother components and external environment, and
(ii) the means of component binding and communication.

• Extra-Functional Properties The extra-functional

lifecycle

Extra Functional Properties. The extra functional
properties dimension identifies specifications and support
that includes the provision of property values and means
for their composition.

• Domains. This dimension shows in which application and
business domains component models are used.

8-Apr-09 8

Domain A Domain B

Component lifecycleComponent lifecycle

Component lifecycle
requirements

modelling

implementation

packagingpackaging

deploymentComponent forms

Execution
Specification
• Interface
• Models

Code
• Source code
• Executable code

Storage
• Repository
• Package I t ll d E t bl• Models

• Meta data
• Executable code
• Executable models

• Package
• Meta data

Installed
Files

Executable
code

8-Apr-09 ICAT Sarajevo - 2007-10-29 9

Lifecycle categoryLifecycle category
Different stages of a component lifecycle
• Modelling. The component models provide support for the

modelling and the design of component-based systems and
components.

• Implementation. The component model provides support for
generating and maintaining code. The implementation can stop with
the provision of the source code or can continue up to thethe provision of the source code, or can continue up to the
generation of a binary (executable) code.

• Storage & Packaging Since components can be developed• Storage & Packaging. Since components can be developed
separately from systems, there is a need for their storage and
packaging – either for the repository or for a distribution

• Deployment & Execution. At a certain point of time, a component
is integrated into a system. This activity happens at different points
of development or maintenance phase.

8-Apr-09 10

p p

ConstructsConstructs
Specification of• Specification of
– Interface <<component>>

Client

<<component>> <<component>>

– Composition
(interaction)

Client Server

8-Apr-09 11

Constructs Interface SpecificationConstructs – Interface Specification
Categoriesg

• Levels
– - Syntactic

-Semantic
- Behavioral

• Specification language<<component>> p g g

• Distinquish

Client

– Provide
– Require

• Interface type
<<component>>

Client
Interface type
– Operation-based
– Port-based<<component>>

Client

8-Apr-09 12

Constructs compositions (I)Constructs – compositions (I)

<<component>>
Client

<<component>>
Server

Architectural style Communication type

(client-server, pipe-filter) (synchronous, asynchronous)

8-Apr-09 13

Constructs compositions (II)Constructs compositions (II)
Endogenous

<<component>>
Client

<<component>>
Server

Endogenous

Client Server

EExogenous

<<component>> <<component>><<Connector>> <<component>>
Client ServerIn between Server

8-Apr-09 14

Constructs compositions (III)Constructs compositions (III)
CompositionComposition

Horizontal<<component>>
Client

<<component>>
ServerClient Server

Vertical
<<component>>

Server

<<component>> <<component>>
Client Server

8-Apr-09 15

Constructs classificationConstructs classification
• Interface

– operation-based/port-based
provides/requires– provides/requires

– The interface level (syntactic, semantic, behaviour)
– distinctive features

• Connections
A hit t l St l– Architectural Style

– Communication type (synchronous/asynchronous)
– Binding typeBinding type

• Endogenous, Exogenous
• Vertical, horisontal

8-Apr-09 16

Extra Functional PropertiesExtra-Functional Properties
M t f t f ti l ti• Management of extra-functional properties
– Does a component provide any support for extra-functional

properties?properties?
– What are the mechanisms?
– Which properties are managed?

• Composition of extra-functional properties
– P(C1 o C2) = P(C1) o P(C2)
– What kind of composition is supported?
– Which properties?Which properties?

8-Apr-09 17

Management of EFP
A BA B

Management of EFP
component

EFP Management EFP Management

component

component

EFP Management EFP Management

componentEndogenous EFP
management

component

EFP ManagementEFP Management EFP ManagementEFP Management

component

component

EFP ManagementEFP Management EFP ManagementEFP Management

componentEndogenous EFP
management

Component Execution Platform

EFP ManagementComponent Execution Platform
Component Execution Platform

EFP ManagementEFP ManagementComponent Execution Platform

component component

component component

Exogenous EFP
management

C D
component component

component component

Exogenous EFP
management

C D

Component Execution Platform

EFP Management EFP Management

Component Execution Platform

EFP Management

g

Component Execution Platform

EFP Management EFP Management

Component Execution Platform

EFP ManagementEFP Management

g

EFP Managed systemwideEFP Managed per collaboration EFP Managed systemwideEFP Managed per collaboration

EPF composition types (I)EPF – composition types (I)
1 Di tl bl ti1. Directly composable properties.

2 Architecture-related properties2. Architecture related properties

3 D i d ti3. Derived properties.

4. Usage-depended properties.

5. System environment context properties.

8-Apr-09 19

EPF composition types (II)EPF – composition types (II)
1 Di tl bl ti A f bl i1. Directly composable properties. A property of an assembly is a

function of, and only of, the same property of the components
involved.

– P(A) = f(P(C1),…P(Ci),…,P(Cn))

2. Architecture-related properties. A property of an assembly is a
function of the same property of the components and of the
software architecture.

– P(A) = f(SA, …P(Ci)…), i=1…n
SA ft hit t– SA = software architecture

8-Apr-09 20

EPF composition types (III)EPF – composition types (III)
3 Derived properties. A property of an assembly depends on several3 Derived properties. A property of an assembly depends on several

different properties of the components.
– P(A) = f(SA, …Pi(Cj)…), i=1…m, j=1…n
– Pi = component properties
– Cj = components

4 Usage-depended properties A property of an assembly is4 Usage-depended properties. A property of an assembly is
determined by its usage profile.
– P(A,U) = f(SA, …Pi(Cj,U)…), i=1…m, j=1…n
– U = Usage profile

5 System environment context properties. A property is determined
by other properties and by the state of the system environmentby other properties and by the state of the system environment.
– P(S,U,X) = f(SA, …Pi(Cj,U,X)…), i=1…m, j=1…n
– S= system, X = system context

8-Apr-09 21

DomainsDomains
Applications and business domain of the Component Models

• General-purpose:
– Basic mechanisms for the production and the composition of

tcomponents
– Provide no guidance, nor support for any specific architecture.

• Specialised:
– Specific application domains

(i.e. consumer electronics, automotive, …)

• Generative:
– Instantiation of particular component models

P id i i l d t f t h l i– Provide common principles and some common parts of technologies
(for example modelling)

– Other parts are specific (for example different implementations)

8-Apr-09 22

if l

Modelling

Implementatio
nLifecycle n

Packaging

Deployment

At compilation

At run-time

Interface type
Operation-based

Interface
specification

Interface type
Port-basedDistinction of

Provides /
Requires
Interface
Language

Interface Levels

Syntax

Semantic

C t

Constructs

Interface Levels Semantic

BehaviourDistinctive
features

Interaction
Styles

C i ti
Synchronous

Component
model Interaction

Communication
Type Asynchronous

Binding type
Exogenous /
Endogenous

HierarchicalHierarchical

Extra
Management

Endogenous
Collaborative
Endogenous
Systemwide
Exogenous

C ll b tifunctional
properties

Collaborative
Exogenous
Systemwide

Specification
Composition
and analysis

support

Generative

8-Apr-09 23

Domains General
purpose

Specialised

Illustration of the Classification
Framework use

• Survey of 20 component models• Survey of 20 component models

• Selection of documentation for each component modelSelection of documentation for each component model
– Satisfies criteria
– Disponibility the definition (Interfaces, composition)

– Some points in the table have been subject our interpretation.p j p

8-Apr-09 24

Chosen component modelsChosen component models
AUTOSAR Mi f C Obj• AUTOSAR

• BIP
• COMDES

• Microsoft Component Object
Model (COM)

• OpenCOM
• Common Component Architecture

(CCA)
• CompoNETS

p
• The Open Services Gateway

Initiative (OSGi)
P ll diCompoNETS

• CORBA Component Model (CCM)
• The Entreprise JavaBeans (EJB

F l

• Palladio
• Pin
• Robocop• Fractal

• The K-Component Model
• KobrA

Robocop
• Rubus
• SaveCCM

• Koala
• PIN

8-Apr-09 25

Lifecycle table
ComponentComponent

Models Modelling Implementation Packaging Deployment

AUTOSAR N/A C Non-formal specification of container At compilation

BIP A 3-layered representation: behavior, interaction,
and priority BIP Language N/A At compilationp y

BlueArX N/A C N/A At compilation

CCM N/A Language independent
Deployment Unit archive

(JARs, DLLs) At run-time

COMDES II ADL-like language C N/A At compilation

CompoNETS Behavour modeling (Petri Nets) Language independent Deployment Unit archive At run-timeCompoNETS Behavour modeling (Petri Nets) Language independent (JARs, DLLs) At run-time

EJB N/A Java EJB-Jar files At run-time

Fractal
ADL-like language

(Fractal ADL, Fractal IDL),
Annotations (Fractlet)

Java (in Julia, Aokell)
C/C++ (in Think)

.Net lang. (in FracNet)
File system based repository At run-time

KOALA ADL-like languages (IDL,CDL and DDL) C File system based repository At compilationKOALA ADL like languages (IDL,CDL and DDL) C File system based repository At compilation

KobrA UML Profile Language independent N/A N/A

IEC 61131
Function Block Diagram (FBD)

Ladder Diagram (LD)
Sequential Function Chart (SFC)

Structured Text (ST)
Instruction List (IL) N/A At compilation

IEC 61499 Function Block Diagram (FBD) Language independent N/A At compilation

JavaBeans N/A Java Jar packages At compilation

MS COM N/A OO languages DLL At compilation and at run-
time

OpenCOM N/A OO languages DLL At run-time

OSGi N/A Java Jar-files (bundles) At run-time and at
compilationcompilation

Palladio UML profile Java N/A At run-time
PECOS ADL-like language (CoCo) C++ and Java Jar packages or DLL At compilation

Pin ADL-like language (CCL) C DLL At compilation
ProCom ADL-like language, timed automata C File system based repository At compilation

ROBOCOP ADL-like language, resource management model C and C++ Structures in zip files At compilation and at run-
time

8-Apr-09 26

RUBUS Rubus Design Language C File system based repository At compilation
SaveCCM ADL-like (SaveComp), timed automata C File system based repository At compilation
SOFA 2.0 Meta-model based specification language Java Repository At run-time

Lifecycle table
Component

Models Modelling Implementation Packaging Deployment

AUTOSAR N/A C At AUTOSAR N/A C N/A compilation

A 3-layered
t ti Source code, AtBIP representation:

behavior, interaction
and priority

,
implementation in

BIP language
N/A At

compilation

CCM

Abstract
model:OMG-IDL,

Programming
Language

independent.

Deployment Unit
archive

(JARs DLLs)
At run-time

model: CIDL (JARs, DLLs)

Fractal

ADL-like language
(Fractal ADL, Fractal

IDL)

Julia,
Aokell(Java)
Thi k(C/C)

File system based
i At run-timeFractal IDL),

Annotations (Fractlet)
Think(C/C++)
FracNet(.Net)

repository At run time

KOALA ADL-like languages
(IDL CDL d DDL) C File system based

it
At
il ti

8-Apr-09 27

(IDL,CDL and DDL) repository compilation
EJB N/A Java binary code EJB-Jar files At run-time

Constructs table - Interface
Distinction Interface

Component
Models

Interface
type

of
Provides /
Requires

Distinctive features Interface
Language

Levels
(Syntactic,
Semantic,

Behaviour)
Operation-

AUTOSAR
Operation

based
Port-based

Yes AUTOSAR Interface* C header files Syntactic

BIP Port-based No Complete interfaces,
Incomplete interfaces

BIP Language
Syntactic
Semantic
BehaviourIncomplete interfaces Behaviour

BlueArX Port-based Yes N/A C Syntactic

CCM
Operation-

based Yes
Facets and receptacles
Event sinks and event CORBA IDL,

CIDL SyntacticCCM based
Port-based

Yes Event sinks and event
sources

CIDL Syntactic

COMDES II Port-based Yes N/A
C header files
State charts
diagrams

Syntactic
Behaviour

CompoNET
S

Operation-
based

Port-based
Yes

Facets and receptacles
Event sinks and event

sources

CORBA IDL,
CIDL,

Petri nets
Syntactic
Behaviour

O ti
Java

P iEJB Operation-
based No N/A Programming

Language +
Annotations

Syntactic

Fractal Operation-
based Yes Component Interface,

IDL, Fractal
ADL, or Java or

C, Syntactic
Behaviour

8-Apr-09 28

Fractal based Yes
Control Interface

C,
Behavioural

Protocol
Behaviour

KOALA Operation-
based Yes Diversity Interface,

Optional Interface
IDL, CDL Syntactic

Constructs table - interaction
COMPONENT

MODELS
INTERACTION

STYLES
COMMUNICATION

TYPE

BINDING TYPE

EXOGENOUS HIERARCHICAL

AUTOSAR Request response,
Messages passing

Synchronous,
Asynchronous No Delegation

BIP
Triggering

Rendez-vous,
Broadcast

Synchronous,
Asynchronous No Delegation

BlueArX Pipe&filter Synchronous No Delegation

CCM Request response,
Triggering

Synchronous,
Asynchronous No NoTriggering Asynchronous

COMDES II Pipe&filter Synchronous No No

CompoNETS Request response Synchronous,
Asynchronous No NoAsynchronous

EJB Request response Synchronous,
Asynchronous No No

F t l Multiple Synchronous Y Delegation

8-Apr-09 29

Fractal Multiple
interaction styles

Synchronous,
Asynchronous Yes Delegation,

Aggregation

KOALA Request response Synchronous No Delegation,
Aggregation

EFP
Component Management of EFP Properties specification Composition and p

Models Management of EFP Properties specification p
analysis support

BlueArX Endogenous per collaboration
(A)

Resource usage, Timing
properties N/A

EJB 3 0 Exogenous system wide (D) N/A N/AEJB 3.0 Exogenous system wide (D) N/A N/A

Fractal Exogenous per collaboration
(C)

Ability to add properties (by
adding “property” controllers) N/A

KOALA Endogenous system wide (B) Resource usage Compile time checks of g y () g resources

KobrA Endogenous per collaboration
(A) N/A N/A

Palladio Endogenous system wide (B) Performance properties Performance propertiesPalladio Endogenous system wide (B) specification Performance properties

PECOS Endogenous system wide (B) Timing properties, generic
specification of other properties N/A

Pin Exogenous system wide (D) Analytic interface, timing Different EFP composition Pin Exogenous system wide (D) properties theories, example latency

ProCom Endogenous system wide (B) Timing and resources Timing and resources at
design and compile time

Memory consumption, Timing Memory consumption and
Robocop Endogenous system wide (B)

Memory consumption, Timing
properties, reliability, ability to

add other properties

Memory consumption and
timing properties at

deployment

Rubus Endogenous system wide (B) Timing Timing properties at design
time

8-Apr-09 30

SaveCCM Endogenous system wide (B) Timing properties, generic
specification of other properties

Timing properties at design
time

SOFA 2.0 Endogenous system wide (B) Behavioural (protocols) Composition at design

DomainsDomains
om

ai
n

TO
SA

R

B
IP

ue
A

rX

C
C

M

M
D

E
S

II

po
N

E
T

S

E
JB

ra
ct

al

O
A

L
A

ob
rA

C
 6

11
31

C
 6

14
99

aB
ea

sn
s

S
C

O
M

en
C

O
M

O
SG

i

al
la

di
o

E
C

O
S

Pi
n

D
o

A
U

T B

B
lu C

C
O

M

C
om

p E Fr K
O K
o

IE
C

IE
C

Ja
va M
S

O
pe O Pa PE

P

General- x x x x x x x x x xpurpose x x x x x x x x x x

Specialised x x x x x x x x x

Generative x

8-Apr-09 31

ConclusionConclusion
• From the results we can recognize some recurrent patterns such as• From the results we can recognize some recurrent patterns such as

– general-purpose component models utilize client-server style
– Specialized domains (mostly embedded systems) pipe & filter is

the predominate stylethe predominate style.
– Composition of extra-functional properties is rather scarce.
– Behaviour & Semantic rarely supported

Al t it– Almost never repository

• Further work
– Refinement of the model (detailed and more formalised

classification)
– Inclusion of additional component models
– Analysis per domain
– Pattern for specific groups of models

8-Apr-09 32

