
IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID 1

A Classification Framework
for Software Component Models

Ivica Crnković, Member, IEEE, Séverine Sentilles, Student Member, IEEE,
Aneta Vulgarakis, Student Member, IEEE, and Michel R. V. Chaudron

Abstract —In the last decade a large number of different software component models have been developed, with different aims
and using different principles and technologies. This has resulted in a number of models which have many similarities, but also
principal differences, and in many cases unclear concepts. Component-based development has not succeeded in providing standard
principles, as has, for example, object-oriented development. In order to increase the understanding of the concepts, and to differentiate
component models more easily, this paper identifies, discusses and characterises fundamental principles of component models, and
provides a Component Model Classification Framework based on these principles. Further, the paper classifies a large number of
component models using this framework.

Index Terms —Software components, software component models, component lifecycle, extra-functional properties, component
composition.

✦

1 INTRODUCTION

COMPONENT-BASED software engineering (CBSE) is
an established area of software engineering. The

techniques and technologies that form the basis for CBSE
originate from object-oriented design, software archi-
tectures and Architecture Definition Languages (ADLs),
middleware, and certain older approaches such as struc-
tural and modular development. The inspiration for
“building systems from components” comes from other
engineering disciplines, such as civil or electrical en-
gineering. However, because software is in its nature
different from physical products, a direct translation
of principles from the classical engineering disciplines
into software engineering is not possible. For example,
the understanding of the term component has never
been a problem in the classical engineering disciplines,
since a component can be intuitively understood and
this understanding fits well with fundamental theories
and technologies. This is not the case with software
components. There has been much debate on the notion
of software component, as for example in [1].

From the beginning, CBSE struggled with the problem
of obtaining a common and sufficiently precise definition
of the concept of software component. An early and
commonly used definition from Szyperski [2] states that

“A software component is a unit of composition with
contractually specified interfaces and explicit context depen-

• Ivica Crnkovic, Séverine Sentilles and Aneta Vulgarakis are with
Mälardalen University, School of Innovation, Design and Engineering,
Box 883, SE-72123 Västerås, Sweden.
E-mail: ivica.crnkovic, severine.sentilles, aneta.vulgarakis@mdh.se.

• Michel R.V. Chaudron is with Universiteit Leiden, Faculty of Science,
Leiden Institute of Advanced Computer Science. P.O. Box 9512, 2300 RA
Leiden, The Netherlands.
E-mail: chaudron@liacs.nl

dencies only. A software component can be deployed indepen-
dently and is subject to composition by third party.”

In spite of its generality, this definition does not cap-
ture the entire realm of component-based approaches.
The ongoing debates have led to another definition by
Heineman and Councill [3]: “A software component is a
software element that conforms to a component model and can
be independently deployed and composed without modification
according to a composition standard.”

Here the emphasis has been shifted from component
to component model1 (a component model determines
what is and what is not a component). Heineman and
Councill [3] define a component model as follows “A
component model defines a set of standards for component
implementation, naming, interoperability, customization, com-
position, evolution and deployment”.

This definition points out that a component model
covers multiple facets of the development process, deal-
ing with (i) rules for the construction of individual
components, and (ii) rules for the assembly of these
components into a system.

Currently, there exist many component models. Some
component models target specific application domains,
ranging from embedded systems (automotive software,
consumer electronics) to particular business domains (fi-
nance, telecommunications, healthcare, transportation).
Other component models are based on certain techno-
logical platforms (Enterprise Java Beans, DCOM). All
component models are based on some, often implicit, as-
sumptions about the architecture of the types of systems
they are targeting.

The architectural assumptions made by the component
models often relate to the way in which system level

1. In the remaining of the paper, we abbreviate the term “software
component model” to “component model” and “software component”
to “component”.

IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID 2

properties (for example real-time properties, safety, low
resource use) can be achieved through the composition
of components. In some cases, component models take
a strict approach and enforce rules that guarantee that
a system level property is achieved. Other component
models offer flexibility at the implementation level, but
require the disciplined design of components for achiev-
ing system level properties. The fact that CBSE is applied
to a large spectrum of application domains, each with
their own set of architectural requirements explains why
many component models exist today. This large variety
reinforces the difficulty to understand the common prin-
ciples of component models.

The diversity found in component models is similar
to the one that exists in the area of ADLs: at a high
level of abstraction, there are many similar mechanisms
and principles but there are also many variations and
different implementations. For this reason, in a manner
similar to what was done for ADLs [4], [5], we propose a
framework which provides a classification and compar-
ison between different component models. A classifica-
tion framework can aid in the understanding of software
component models through its explanation of their key
principles. The framework can help in assessing the
suitability of a component model for a particular set
of requirements or for a particular application domain.
Furthermore, the framework can help in the design of
new component models through the list of important
characteristics a component model must provide.

Because component models and their implementa-
tions in component technologies cover a large range
of different aspects of the development process, we
group these aspects into several dimensions and build a
multidimensional framework that refers to different, yet
equally important, characteristics of component models.
We have analyzed a considerable number of component
models and compared their characteristics using the
classification framework. The results of the comparison
have led to some observations which are discussed in
the paper.

Our research methodology followed an empirical ap-
proach consisting of the successive iterations of the steps
of: (i) observations and analysis, (ii) classification, and
(iii) validation. The observations and analysis included
studying of a number of component models and the
literature related to the general principles of CBSE [2],
[3], [4], [6], [7], [8], [9], and related classifications [5], [10],
[11], [12]. In addition, we utilized our own experience
gained from the development of the SaveCCM [13],
ProCom [14], and Robocop [15] component models, and
our tight cooperation with industry that used some com-
ponent technologies in their development (ABB (COM,
Pin), Ericsson (Service-oriented architecture), Philips
(Koala, Robocop), Volvo (AUTOSAR, Rubus), Arcticus
(Rubus)). Based on this, our classification framework
was built, incrementally populated and refined with a set
of component models. The validation consisted of trying
to fit at each iteration a larger set of component models

into the framework. Further validation was performed
by discussing the framework with several CBSE-experts
from industry and academia and with researchers in
the broader field of software engineering. For several
component models, we contacted their developers and
obtained feedbacks on the classification we proposed
for “their” component models. The resulting analysis
and discussions have also led to a refinement of the
framework.

The remainder of this paper is organized as follows.
Section 2 gives definitions and explanations of basic
concepts used in CBSE. Section 3 defines, explains and
motivates the different dimensions of the classification
framework. Section 4 discusses the criteria for inclu-
sion of different component models into our component
models survey and the classification framework. The
comparison framework and observations from the com-
parison are presented in Section 5 and further analyzed
in Section 6. Related work is covered in Section 7, and
Section 8 concludes the paper. A brief overview of the
selected component models on which the classification
framework has been mapped is given in Appendix A.

2 MAIN CONCEPTS OF COMPONENT MODELS

The classification of component models requires an un-
derstanding of the main concepts and unique terminol-
ogy used in CBSE. Therefore, we define the concepts
related to the notion of component models2. The termi-
nology defined in this section includes component model,
component-based system, component and binding. A compo-
nent itself is defined relatively to a specific component
model [6].

Definition: A Component model defines standards for (i)
properties that individual components must satisfy, and (ii)
methods for composing components.

In this definition, the term “component properties”, is
meant to include functional and extra-functional specifi-
cations of individual components. The term “composing
components” is meant to include mechanisms for com-
ponent interaction. To explain these terms further, we
start from an architectural specification of a component-
based system.

A component-based system identifies (i) components,
(ii) an underlying platform and (iii) the binding mecha-
nisms, as shown in Fig. 1 and presented formally as:

CBS =< P, C, B >

Where
CBS = Component-based system;
P = System platform;
C = A set of components Ci;
B = Set of bindings Bi.

2. The focus of this paper is on component models. Therefore, the
terms from the general domain of CBSE that are not specifically related
to component models will not be discussed in this paper.

IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID 3

2

1

<<PLATFORM>>

<<COMPONENT>> <<COMPONENT>>

Fig. 1. Component-based system

A component is executable3. In contrast to arbitrary
executable code, a component is formed to interact with
other components according to predefined rules. In other
words, a component is a software module that includes
both execution code and machine-readable metadata
(typically including the interface-signature) which ex-
plicitly describes the services that the software provides
and the services that it requires from other components
and its execution environment. The metadata supports
the component framework in composing a component
with other components, and in deploying it into an
execution environment. In addition, the metadata can
include information about extra-functional properties of
components.

More formally, we specify a component C by a set
of properties. Properties are used in the most general
sense as defined by standard dictionaries, e.g.: “a con-
struct whereby objects and individuals can be distin-
guished” [10]. There is no unique taxonomy of prop-
erties, and there exist different property classifications.
One commonly used classification is to distinguish func-
tional from extra-functional properties (also designated
as non-functional, or Quality of Services, or “ilities”).
While functional properties describe functions or ser-
vices a component provides or requires, extra-functional
properties (EFPs) describe its non-functional characteris-
tics. Typical examples of extra-functional properties are
quality attributes such as reliability and response-time.
A component C can expose its functional properties by
the means of an interface I . Hence, we can characterize
a component C by its functional interface I and by a set
of extra-functional properties P :

C = 〈I ,P〉 , with I = {i1, i2, ..in};

P = {p1, p2, ..pk}.

I defines a set of functional properties (services) ik
that a component provides or requires.

P defines a set of extra-functional properties pi of the
component.

If a component C = 〈I ,P〉 complies with a component
model CM , then this implies that its interface and its

3. Note that executable-property does not necessarily mean binary
code. For example. the execution can be achieved through an inter-
preter or by a virtual machine, or even through compilation before the
execution.

properties must comply with the rules of the component
model. This is formally denoted as follows:

C |= CM ⇒ I ,P |= CM

Bindings define connections between interfaces. We
distinguish bindings between (i) the components and the
platform (which enables component integration into a
system) from (ii) bindings between components (which
enables component interaction). In the first case, we talk
about component deployment (denoted as ① in Fig. 1) and
in the second about component binding (denoted as ②).

The components C1 and C2 bounded by their inter-
faces I1 and I2 construct an assembly A = {C1 ,C2}. If a
component model includes assembly as an architectural
element, then the assembly is specified by its interface
IA:

A = {C1 ,C2 },A = 〈IA〉 |IA = 〈I1 ⊕ I2 〉

Note that an assembly is not necessary a component
itself; it is not necessary that it conforms to the compo-
nent model. If an assembly C = {C1 ,C2} conforms to
the component model, i.e.

C = 〈I ,P〉 ; I = 〈I1 ⊕ I2 〉 ,C |= CM

the assembly is a component, also called a composite
component.

A composite component also exhibits a set of extra-
functional properties. In the above example, the com-
posite component is specified by C = 〈I, P 〉 but we did
not defined P as a composition of component properties
P1 and P2 . We can state a question: Can P be defined
as a composition of P1 and P2 ? As we will see later, the
extra-functional properties of a composite component
are in most cases not only the result of component
property composition, but also of the external environ-
ment (e.g. underlying platform and other components).
Formally, we express this as

C = 〈C1 ⊕ C2 〉 ⇒ I = 〈I1 ⊕ I2 〉 ∧ Pex ` P = 〈P1 ⊕ P2 〉

where Pex denotes a specification of the external (sys-
tem) context that has an impact on the composition of
component extra-functional properties. A more detailed
discussion about binding and composition is presented
in Section 3.2.2.

3 THE CLASSIFICATION FRAMEWORK

The rules a component model defines for the design and
composition of components cover different principles
and hide many complex implementation mechanisms.
Furthermore, different component models cover differ-
ent phases in the component lifecycle; while some sup-
port only the modelling and design stage, others support
mainly the implementation and run-time stages. For this
reason, we cannot simply list all possible component
models characteristics, but we group the characteristics
according to their similar concerns and aspects.

IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID 4

Starting from these premises, we divide the basic
characteristics and principles of component models into
the following three dimensions:

D.1 Lifecycle. The lifecycle dimension identifies the
support provided by a component model and the
component forms throughout the lifecycle of com-
ponents. CBSE is characterized by a separation of
the development processes of individual compo-
nents from the development process of the overall
system. A component lifecycle covers stages from
the component specification until its integration
into the systems and possibly its execution and
replacement.

D.2 Construction. The construction dimension identi-
fies principles and mechanisms for building sys-
tems from components including (i) the component
functional specification (of which the interface is a
prominent part), (ii) the means of establishing con-
nections between the components, i.e. binding, and
the means of intercommunications, i.e. interactions
between the components.

D.3 Extra-Functional Properties. The extra-functional
properties dimension identifies the facilities a com-
ponent model offers for the specifications, manage-
ment and composition of extra-functional proper-
ties.

Below, we discuss these dimensions and introduce
their features, i.e. the characteristics of component mod-
els.

3.1 Lifecycle

An important characteristic of CBSE is the separation
of the development process of the overall system from
the development processes of individual components [7].
These processes can be completely independent as for
example in the development of COTS (Commercial Off-
The-Shelf) components and COTS-based systems, up to
the point where a component is integrated into a system.

The development of an individual component follows
the following stages (see Fig. 2): requirements, design,
implementation, deployment and execution. During its
lifecycle, a component has different forms [16]: initially,
a component is represented by a set of requirements,
yet during design the same component is represented
by a set of models. Subsequently, the same component is
represented by means of source code, complemented by
metadata. After deployment, the component is integrated
in an execution environment. And at run-time, the same
component4 is now represented by object-code of the
target platform. Optionally, at intermediate stages, a
component may be packaged and represented by means
of a set of files in a directory or zip-file. Fig. 2 shows
these successive stages of a component’s lifecycle. The
lower half of the figure lists the ways in which compo-
nents may be represented in that particular stage of the

4. Actually, an instance of this component.

lifecycle. In the figure, the requirements and execution
stages are depicted with dashed lines to indicate that
in these stages components do not necessarily exist as
independent units.

Most component models provide support for several
stages of the component’s lifecycle. Support in the design
stage may consist of a dedicated design notation or pre-
defined approach for modelling different aspects of com-
ponents. For example, the Koala component model [17]
has an explicit design notation which includes represen-
tations for, amongst others, components, interfaces, and
bindings. Other component models dictate the use of
state-machines for modelling the behaviour of compo-
nents. In the implementation stage, a component model
typically defines which construction elements should
be used for encoding a component in a programming
language. Implementation level rules typically include
conventions for the naming and structuring of interfaces.
The component models that cover several stages often
provide a support for transformation between the dif-
ferent component forms; typical examples are transfor-
mations from models to code, such as interface speci-
fications to stubs in programming languages. In some
cases, the transformation rules can be quite complex, as
for example in the domain of real-time systems in which
the design units, the components, are transformed into
executable units, the real-time tasks.

3.1.1 Component lifecycle stages
We identify the following stages of the component life-
cycle:

L.1 Modelling stage. Component models provide sup-
port for the modelling and the design of com-
ponents and component-based systems. Models
are used either for the architectural description
of the systems, the components and the interac-
tion between them (for example using a standard
or a dedicated ADL), or for the modelling and
verification of particular system and component
properties (using different modelling techniques
such as statecharts or different variants of finite
automata). For example, the KobrA [19] component
model uses UML profiles with new or modified
UML architectural elements and annotations, while
ProCom [14] and Pin [20] have their own modelling
languages.

L.2 Implementation stage. Component models provide
support for the production of code. The support for
implementation stage may stop with the provision
of the source code, or may continue up to the gen-
eration of a binary (executable) code5. Most of the
component models use standard programming lan-
guages. Some component models assume the use

5. Considering the component model definition and Szyperski’s def-
inition of a component, it can appear strange that component models
do not address the implementation stage. However, the component
models specify characteristics of components that are executable units,
although not necessarily the implementation rules themselves.

IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID 5

requirements modelling implementation packaging deployment execution

Component lifecycle

Specification

- interface

- models

- meta data

Code

- source code

- executable code

- executable models

Storage

- repository

- package

- meta data

Installed files Executable code

 Component forms in a component lifecycle

Fig. 2. Component lifecycle and component forms

of a particular language for the implementation. In
such cases, the component model may require that
(elements of the) language are used according to
some specific rules. For example, the EJB compo-
nent model [21] uses Java, with some extensions
and additional requirements. Others component
models explicitly aim to be language-independent
for the implementation. Such component models
may have translators from their modelling and
specification languages to a particular, or some-
times multiple, programming language(s) as for
CCM [22].

L.3 Packaging stage. Because of the separation of the
development processes in the component-based
lifecycle, there is a need for the storage and pack-
aging of components, either in a repository or for
distribution. A component package is a set of meta-
data and code (source or executable). The metadata
contains information about the contents of the files
in the package. Accordingly, the result of this stage
can be a file, an archive, or a repository in which the
packaged components reside prior to their use. For
example, in Koala [17], components are packed into
a file system-based repository, with one folder per
component. The folder includes a number of files: a
Component Description Language (CDL) file and,
a set of C and header files, test file and different
documents. Another example of packaging is used
in the EJB [21] component model. There, packaging
is done through JAR archives, called EJB-JAR. Each
archive contains an XML deployment descriptor, a
component description, a component implementa-
tion and interfaces.

L.4 Deployment stage. At a certain point in time, a
component is integrated into an executable system
or some target environment, and becomes ready for
execution. This may happen at different stages in
the system’s lifecycle. In general, a component can
be deployed at:

a) compilation time: Components are integrated
before the system starts executing. Compila-
tion (and linking) achieves integration of com-
ponents through the resolution of references
to interface names. Binding at compilation-
time is typical for embedded systems in which
the components and the execution platform
are compiled and linked together into an ex-
ecutable image. This happens for instance in
the Koala component model.

b) run-time: Components may be added or re-
placed in a system which is executing. Run-
time deployment may be realized by using a
registry (COM [23]), or by containers which
handle installation and communication of the
component using information of the deploy-
ment descriptor packed with the component
implementation (CCM [22], EJB [21]).

3.2 Construction

As defined in Oxford advanced learners dictionary [24],
construction means “the process or method of building”.
The construction dimension of our classification includes
three parts: (i) connection points i.e. interfaces, (ii) mech-
anisms for establishing connections, i.e. binding mech-
anisms, and (iii) communication itself, i.e. interaction.
The next section discusses each of these aspects in more
detail, and provides a list of elements that characterize
this dimension.

3.2.1 Interface

A component interface defines a set of actions which
is understood by both the provider (the component)
and user of that interface (other components, or other
software). The actions of an interface can be charac-
terized by a name and a list of parameters that are
input to or output from the action. A very common
way of specifying an interface is by means of a set of

IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID 6

operations (functions) with parameters, as for example
used in Java Beans [25] and OSGi [26]. However, there
exist other types of interfaces; so called “port-based”6,
where ports are entries for receiving/sending different
data types and events, as for instance implemented
in IEC61131 [28] and SaveCCM [13]. Fig. 3 illustrates
the ”operation-based” and ”port-based” interfaces and
interaction styles. In the first case, a component invokes
an operation from another component (which may re-
turn a result), while in the second case, a component
pushes data to another component and possibly starts
the execution of this other component by sending a
trigger. Alternatively, triggers can be sent by a clock
invoking the periodical execution of the component.

C1 C2 C3

function0()
function1()

function2()

a) operational-based interface

C1 C2 C3

triger0

 triger1

b) port-based interface

 data1

 triger3

 triger3’

 triger3’’

 triger2

 triger2’

 triger2’’

triger0’

 triger1’

Fig. 3. Operation-based and port-based interfaces

Most component models distinguish the actions that
components provide to their environment, called pro-
vided interface, from the actions they require from this
environment, called required interface. This is an impor-
tant feature that makes explicit the dependencies of a
component. This in turn facilitates independent devel-
opment and deployment of components.

An interface is not a constituent part of a component,
but can exist independently of components as a stan-
dard for representing some piece of functionality in a
system. The independent existence of interfaces makes
it possible to specify interfaces independently of their
implementation.

In different stages of development, an interface may
be defined through different languages. In the modelling
stage, component models may either provide their own
languages (often similar to some ADL), or use UML
(possibly with some extensions or profiles) for defining
interfaces. In the implementation stage, there are two
common ways of defining interfaces.

6. Note that the “port-based” concept is different from the concept
in UML 2.1 [27] in which a port is defined as a set of interface
specifications.

One way is to describe interfaces by means of an
interface description language (IDL) that is indepen-
dent from a particular programming language. Through
mappings between specific programming languages and
the IDL, interoperability between multiple programming
languages is achieved: components implemented in dif-
ferent programming languages can be combined into
one system. IDLs focus only on syntactic interoperability,
but they (implicitly, and sometimes unintentionally) also
determine the styles of interaction through which com-
ponents can communicate. The syntactic interoperability
achieved by IDLs yields the benefit of using different
programming languages for the component implemen-
tations.

Another way of specifying an interface is to directly
use a programming language, as for example using
an object-oriented language. Typically, in object-oriented
programming languages, a component is expressed as a
class in which the interface is defined as a set of methods
and attributes, possibly with some extensions or syn-
tactic convention to distinguish component architectural
elements (for instance required and provided interface).
In other languages, the structured (stereotyped) use of
header files or abstract classes serves as a means of
defining interfaces.

Driven by the requirements of independent deploy-
ment and dynamic reconfiguration, some component
models define a standard for the binary representation
of interfaces. This binary representation is used at the
deployment stage and during run-time. MS COM is an
example of a component model that has such a binary
standard for interfaces.

To make it possible to perform advanced checks on
the compatibility between interfaces, the notion of con-
tract has been adjoined to interfaces. According to [9],
contracts can be classified hierarchically in four levels
which, if taken together, may form a global contract. In
our classification, we adopt the first three levels, since the
last level is concerned with extra-functional properties
which are covered in more detail in Section 4.

• Syntactic level: describes the syntactic aspect, also
called signature of an interface. This level ensures
that the interacting components refer to the same
data types. This is the most common and most easy
agreement to certify as it relies mainly on a (either
static or dynamic) type-checking technique.

• Functional Semantic level: reinforces the previous
level of contracts in certifying that the values of the
parameters are within the proper range. This can be
asserted using pre-conditions, post-conditions and
invariants.

• Behaviour level: expresses either constraints on the
temporal ordering of interactions between compo-
nents or constraints on the component’s internal
behaviour (e.g. allowed internal states) in response
to interactions. Behaviour contracts are typically ex-
pressed by statecharts or different variants of finite
state machines.

IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID 7

We conclude our discussion on aspects of interfaces
by pointing out that several component models have
distinctive features related to evolvability and variability.
For instance, for evolvability (e.g. to support creating
new functionality but maintaining backward compati-
bility), a component may offer multiple interfaces for
the same functionality. This makes it possible to embody
several versions or variants of functions in the compo-
nent.

3.2.2 Binding mechanisms

Binding is the process that establishes connections be-
tween components (through use of their interfaces and
interaction channels). In CBSE, binding is also often
called component composition by reference to the composi-
tion of the functionality of the components. Similarly by
association to wires in electrical engineering, binding is
also referred to as wiring in the literature e.g. [3] and [8].

An important question coming from the possibilities
offered by binding mechanisms relates to the compos-
ability of components [10]: “Can an assembly, i.e. a
set of components mutually connected, be treated as a
component itself?”. That is, does an assembly composed
from a set of components fully comply to the rules
imposed by the component model, both in terms of
functional and extra-functional properties? The answer is
not simple. To discuss component composition, we must
first distinguish different types of binding: horizontal
binding and vertical binding as defined below.

Let us assume that the following components
Ci = 〈Ii ,Pi〉 and Cj = 〈Ij ,Pj 〉 satisfy the rules imposed
by a component model CM , i.e.

Ci ,Cj |= CM ⇒ Ii , Ij ,Pi ,Pj |= CM

If we compose Ci and Cj together through an horizon-
tal binding meaning that their respective interfaces are
connected together (i.e. 〈Ii ⊕ Ij 〉), then the assembly A

resulting of this composition is merely a set of compo-
nents cooperating together to realize a functionality, i.e.
A = {Ci ,Cj }. Here, A does not necessary comply with
the component model CM . In spite of this, this type
of binding is often improperly referred to as horizontal
composition. At the modelling stage, horizontal binding
is often realized by connecting a provided interface
of a component with a required interface of another
component. At the implementation stage, this horizontal
binding is typically realized through glue-code or wrap-
pers.

On the other hand, if we identify the assembly A as a
component with an interface IA which is a composition
of interfaces of the involved components, i.e. if we have

A = {Ci ,Cj };A = 〈IA〉 ⇒ IA = 〈Ii ⊕ Ij 〉

where IA |= CM

then A results from a vertical binding and has an interface
IA that satisfies the rules of the component model CM .
At the modelling stage, vertical binding is often attained

through connecting two interfaces of the same kind:
a provided interface of the assembly (resp. required
interface) to a provided interface of an inner component
(resp. required interface). This type of connection is
called delegation. Whereas when all the interfaces of the
inner components are made available to the outside
environment through the interfaces of the assembly, we
speak of aggregation.

If the assembly A satisfies the component model’s
rules with respect to both its interface IA and its prop-
erties PA, i.e.

A = 〈IA,PA〉 ⇒ A = 〈Ii ⊕ Ij , Pex ` Pi ⊕ Pj 〉

where IA,PA |= CM

then the component model supports vertical composition.
This is a very powerful property, but unfortunately
very difficult to achieve in practice. Nevertheless, many
component models support partial vertical composition, in
which functional interfaces can be composed recursively.

In SaveCCM [13], vertical binding is supported and
the component model defines an assembly as a set of
components which export by delegation a set of se-
lected ports, the interface elements. If the assembly also
preserves the “read-execute-write” semantics defined by
SaveCCM for components, then in that particular case,
the assembly is a component because it complies with
the definition of a SaveCCM component.

Binding does not necessarily correspond only to a one-
to-one direct connection between two components; some
component models also support indirect connections
through the utilisation of connectors. When introduced
as first class citizens of a component model, connectors
act as mediators between components and enable (i)
making the interaction between components explicit,
and (ii) the addition (and removal) of advanced medi-
ation mechanisms that are transparent to components.
In several component models, connectors are imple-
mented as special types of components (e.g. adaptors,
brokers or proxies). Implementing connectors in terms
of implementation-level components opens up the pos-
sibility of building more complex interactions patterns
in comparison to using basic connectors.

The use of connectors corresponds to the concept of
exogenous composition because the (logic for handling the)
interaction between components is handled outside of
the components themselves. In contrast to exogenous
composition, endogenous composition refers to a binding
without any intermediary connector. In this case, the
handling of binding and interaction protocols is part of
the components themselves.

At the modelling and implementation stages, binding
is done by a system developer who explicitly states
which components are assembled together by connect-
ing the interfaces of the involved components. This is
one of the forms of third-party binding in which the
establishment of the binding is initiated by an entity
outside the components involved in the binding. On

IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID 8

the other hand, in a first-party binding, a component
decides itself which other component it is to be bound to.
Most of the component models enables the third-party
binding. Typical solutions for first-party binding use an
introspection (or reflexion) interface, which enables the
discovery of the interfaces of the components to connect
to, and a registry, which can look up the identity of
the components that support a specific functionality (or
interface).

When the binding occurs at deployment stage, a
docking interface is commonly used. This docking in-
terface does not offer any application functionality, but
serves instead for managing the binding and subsequent
interaction between a component and the underlying
run-time infrastructure. In many component models
(e.g. CCM, EJB), the binding specification is location-
transparent: the run-time location of components (placed
either on a local or a remote node) is specified separately
from the binding information.

3.2.3 Interactions

Component models use one or more architectural styles
following a specific interaction styles to define the pat-
terns of interactions between components, i.e. how com-
ponents communicate with each other. For instance, the
client-server architectural style, widely used for dis-
tributed computing, uses a request-response interaction
model. This means that for any interaction between two
components, one component sends a request to a specific
other component, which then returns a reply. Hence
traffic across the binding is bidirectional.

Two variants of request-response are distinguished.
In asynchronous request-response, the client initiates the
communication, and continues its activity until, at some
point, it receives the results of its request from the server
component. The interaction can also be synchronous,
which means that the client waits until its request has
been processed.

Another typical interaction style is pipe & filter, which
is mostly used for the streaming of events. This style uses
unidirectional communication between components. In
this style, components are filters that process the data,
and the bindings are the pipes that transfer the data to
the next filters. A characteristic of this style is that it
allows the separate control of the data-flow and control-
flow between components. The control flow is activated
by a triggering interaction model, which enables the
activation of a particular component in response to a par-
ticular signal such as an event, a clock tick, or a stimulus
from another component, as illustrated in Fig. 3.b. This
interaction model includes event-triggering, or event-
driven, and time-triggering. The pipe & filter architec-
tural style is widely used in embedded and real-time
systems because control theory can be easily mapped to
this interaction model. Some component models such as
Rubus [29] decouple the specification of data flow from
control flow.

There are other interaction styles utilized in compo-
nent models, and some prominent examples are broad-
cast, blackboard and publish-subscribe. In most cases,
component models provide a single basic interaction
style. Support for this style is often hardwired in the
execution platform. However, some component models,
such as Fractal [30], Pin [20] and BIP [31] allow the
construction of different interaction styles.

An interaction style determines which types of depen-
dencies must or may exist between components. As a
result, the architectural styles supported by a component
model have a large impact on the flexibility during both
the development and the execution of components. In
general, a style which induces more or stronger depen-
dencies will need more complex protocols for binding
and hence for the replacement of components.

Components may differ with respect to the way their
internal activity and interactions are initiated. Passive
components are activated only by external events (for
example being called by another component), whereas
active components manage their activation themselves,
and can be executed in a separate thread. Some com-
ponent models provide support only for passive com-
ponents (e.g. AUTOSAR, SaveCCM) while others have
developed different ways for component startup and
execution (e.g. CCM, MS COM). Often, the mechanisms
for the activation of components are governed by the
underlying middleware [32] or operating system, or are
taken from the supporting implementation language.

3.2.4 Construction classification
In accordance with the observations and reasoning from
above, we identify the following classification character-
istics for interfaces and connections in the construction
dimension.

C.1 Interface specification, in which different character-
istics allowing the specification of interfaces are
identified:

a) The distinction of interface type: operation-
based (e.g. methods invocations) and port-
based interface (e.g. data passing).

b) The distinction between the provides-part and
the requires-part of an interface.

c) The existence of some distinctive features.
d) The language used to specify the interface.
e) Interface levels which describe the levels of

contractualisation of the interfaces, namely
syntactic, functional semantic and/or be-
haviour level.

C.2 Binding, which describes the characteristics of the
patterns and mechanisms used for binding compo-
nents. It consists of two subtypes:

a) The exogenous sub-category describes
whether the component model includes
connectors as architectural elements or not.

b) The hierarchical sub-category expresses the
possibility of having a hierarchical composi-
tion of components (horizontal composition is

IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID 9

an intrinsic part of all component models, thus
it is implicitly assumed to be supported).

C.3 Interactions, which comprise the following charac-
teristics:

a) Interaction style, which describes the main
underlying architectural style used.

b) Communication type, which details if the
communication used is synchronous and/or
asynchronous.

3.3 Extra-functional properties

Components and component-based systems are carriers
of a number of extra-functional properties (EFPs). The
most basic support that a component model can provide
for EFPs is to facilitate specifying such extra-functional
properties. For example in Robocop [15], components
may specify the maximum execution time per method
of an interface. A specification of such properties makes
it possible to check at the component’s deployment
whether a component breaks the system integrity or
requires more resources than the system can ensure.

Another type of support that a component model can
provide is related to the management of particular EFPs.
For example, CCM [22] explicitly provides redundancy
mechanisms for managing reliability.

Yet another type of support provided by component
models is related to property compositions; it enables the
prediction of systems properties derived from the prop-
erties of the integrated components and the underlying
component framework.

In this section we discuss the EFP specification, man-
agement mechanisms and EFP composition issues, and
then we identify the elements in the classification frame-
work that make it possible to distinguish different com-
ponent models.

3.3.1 Specification of extra-functional properties
Component models rarely address the specification of
EFPs (which by definition belongs to metadata). In many
cases, EFPs are specified implicitly, not as a part of
a component model, but as a part of the component
technology. A basic form of EFP specification is the one
proposed by Mary Shaw [33], where an EFP is specified
as a triple 〈Attribute, Value, Credibility〉 where Attribute
describes the property itself, Value the corresponding
data, and Credibility specifies the confidence in the value.
The attribute Value is often a simple data type, but some
component models provide a more complex value type
(such as a reliability distribution). The Pin component
model has an associated “Predictability-Enabled Com-
ponent Technology (PECT)” [20] [34], which enables the
specification and handling of the extra-functional prop-
erties through “analytical interfaces”. Pin requires that a
reasoning framework is specified which defines how to
analyse a particular type of property. In Robocop [15],
a resource model describes the resource consumption
of components in terms of mathematical cost functions,

and a behavioural model specifies the sequence in which
their operations must be invoked. Based on this infor-
mation, associated analysis techniques can then analyse
the total resource usage and response times. Similarly,
Palladio [18] extends behaviour specifications with an-
notations (or extensions) of their resource usage, and
their failure probabilities. Together with a model of the
physical resources, performance and reliability metrics
can be derived. Most of the component models define
EFPs as attributes of components or, more seldomly, as
attributes of assemblies or of a systems. In ProCOM [35],
EFPs can be specified as multiple values including con-
text dependencies and the possibility to attach attributes
to various component model elements. Here, EFPs are
specified as Attributes in the following form

Attribute =
〈

TypeID , Value+
〉

Value = 〈Data, Metadata, ValidityCondition ∗〉

where:

• TypeID defines the extra-functional property;
• Data contains the concrete value for the property;
• Metadata provides complementary information on

data that allows to distinguish the values; and
• ValidityConditions describe the conditions which

need to be satisfied to keep the value valid upon
reuse.

3.3.2 Management of extra-functional properties

Component models provide different types of support
for managing EFP. This management is related to run-
time EFPs and realised in combination of components
and underlying component execution platform that can
often be integrated as a part of a middleware. Differ-
ent mechanisms for management of EFPs (as well as
for component deployments and communication mech-
anisms) can be found in [32]. We distinguish four types
of support (see Fig. 4):

1) Exogenous Management. The EFP management is
provided outside the components.

2) Endogenous Management. The EFP management is
implemented in the components, i.e. the compo-
nent developers are responsible to implement it.

3) Management per Collaboration. The EFP management
is realized in direct interactions between compo-
nents.

4) Systemwide Management. The EFP management is
provided by the component framework, or under-
lying middleware.

By a combination of these types we get four possible
types of the EFP support:

• Approach A (endogenous per collaboration). A compo-
nent model does not provide any support for EFP
management, but it is expected that a component
developer implements it. This approach makes it
possible to include EFP management policies that
are optimized towards a specific system, and also

IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID 10

component

EFP management

componentcomponentcomponent

EFP management

Endogenous EFP

 management

Exogenous EFP

 management

EFP management

component

EFP management

component

Component Execution Platform

EFP management

component

EFP management

component

Component Execution Platform

EFP management

Component Execution Platform

EFP managed per collaboration EFP managed systemwide

C D

A B

Component Execution Platform

EFP management

Fig. 4. Management of extra-functional properties

can cater for adopting multiple policies in one sys-
tem. This heterogeneity may be particularly useful
when COTS components need to be integrated.
On the other hand, the fact that such policies are
not standardized may be a source of architectural
mismatch between components. A risk of using this
approach is a hetereogeneity of policies for handling
a single EFP in a system. As a result, managing and
predicting emerging properties at the system level
can be very difficult.

• Approach B (endogenous systemwide). In this approach,
there is a mechanism in the component execution
platform that contains policies for managing EFPs
for individual components as well as for EFPs in-
volving multiple components. The ability to negoti-
ate the manner in which EFPs are handled requires
that the components themselves have some know-
ledge about how the EFPs affect their functioning.
This is a form of reflection applied to EFP manage-
ment.

• Approach C (exogenous per collaboration). In this ap-
proach, components are designed such that they
address only functional aspects and are oblivious
to EFP. Consequently, in the execution environment,
these components are surrounded by a container.
This container contains the knowledge on how to
manage EFPs. In this approach, containers are con-
nected to other containers. Connected containers
then manage the EFPs for the components that they
encapsulate.
The container approach is a way of realizing the
separation of concerns in which components con-
centrate on functional aspects and containers con-
centrate on extra-functional aspects. In this way,
components become more generic because no mod-
ification is required to integrate them into systems
that may employ different policies for EFPs. Because

these components do not address EFPs, they are
simpler to implement. A disadvantage of the con-
tainer approaches might be a degradation of the
system performance.

• Approach D (exogenous system-wide). This approach
is similar to approach C, except that the system can
coordinate the management of an EFP from a global
system-wide perspective (e.g. global load balanc-
ing). Consequently, a more complex support need
to be built into the component execution platform.

3.3.3 Composition of extra-functional properties

The most difficult challenge in CBSE is related to com-
posing EFPs. Compositions of EFPs are based on dif-
ferent composition theories, and, in addition, they are
often not only the result of compositions of component
properties, but also depend on other elements of a
particular system architecture or even its environment.
For example, determining the composition of component
performance may depend on the scheduling policies and
the system architecture. According to [10], EFPs can be
classified in categories depending on the composition
domains (i.e. type of parameters that determine the
composition). The following categories are proposed:

• Directly composable properties: A property pk of an
assembly A = 〈C1 ⊕ C2 〉 is a function of, and only
of, the same property of the components involved.

pk (A) = f (pk (C1) , pk (C2))

An example of such property is static memory
consumption. In the simplest case, the system static
memory is the sum of component static memories
plus a constant.

• Architecture-related properties: A property pk of an
assembly A = 〈C1 ⊕ C2 〉 is a function of the same
property of the components and of the software

IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID 11

architecture SA.

pk (A) = f (SA, pk (C1) , pk (C2))

An example of such property is performance: in-
creasing the amount of parallel processing impacts
the performance of the system without changing the
properties of individual components (for details see
[10]).

• Emerging properties: A property pk of an assembly
A = 〈C1 ⊕ C2 〉 depends on several different prop-
erties pi , pj of the components and of the software
architecture.

pk (A) = f (SA, pi (C1) , pi (C2) , pj (C1) , pj (C2) . . .)

An example of an emerging property is response
time of an assembly which depends on the execu-
tion time and resource consumption of the involved
components.

• Usage-depended properties: A property of an assembly
is determined by its usage profile U .

pk (A, U) = f (SA, . . . pi (Cj , Uj) . . .)

Reliability is an example of such property type. The
reliability of a same system can be different for the
different usage profiles of that system.

• System environment context properties: A property of a
system S is determined by other properties and by
the state of the system context X defined by external
parameters outside the system.

pk (S, U, X) = f (SA, X, . . . pi (Cj , Uj) . . .)

Examples of this type are security and safety. These
properties depend also on external conditions (such
as different measures and procedures).

• Non-composable properties: Properties that are not
composable. Examples of such properties are main-
tainability, robustness, portability, etc.

This classification indicates the limitations of the compo-
sitions of EFPs. In general, determining the compositions
of component properties becomes feasible only when
restrictions are imposed on the design of individual
components. In practice, such restrictions are imposed
by the rules/constraints of the component model and
system architecture. For example, static memory usage
of an assembly can be defined as the sum of static
memory usage of involved components, but only using
particular composition policies (e.g. no concurrency).
Other properties are related to usage profile, and if
we cannot predict/specify the usage profile, we cannot
predict the system properties.

3.3.4 Extra-functional properties classification

For the EFPs, we provide a classification with respect to
the following questions:

E.1 Management of EFPs: Which type of management (if
any) is provided by the component model?

E.2 EFP specification: Does the component model con-
tain means for the specification of specific EFPs? If
yes, which properties and in which form?

E.3 Composability of EFPs: Does the component model
provide means, methods and/or techniques for the
composition of certain extra-functional properties
and/or what type of composition?

3.4 The classification overview

Fig. 5 summarizes the classification framework in a
graph form. The numbered items that describe the clas-
sification elements of the three dimensions are listed in
the figure.

4 SURVEY OF COMPONENT MODELS

Using the classification framework, we can analyze com-
ponent models developed in different research groups
or in industry. In our classification of component mod-
els, the first question is whether a particular approach
(model, technology or method) is a component model
or not. This appeared to be a difficult task due to the
diversity of component models. Similar to biology, where
viruses straddle the border between life and non-life,
there is a wide range of models, from those having
many elements of component models, yet not being
considered component models, via those that lack many
elements, but still are designated as component models,
to those that are widely accepted as component models.
Therefore, we identify the minimum criteria required to
classify an approach as a component model.

The minimum criteria correspond to the definition
of component models given in the introduction and in
Section 2:

1) A component model includes a component defini-
tion;

2) A component model provides rules for component
interoperability;

3) Component functional properties are unambigu-
ously specified by component interface;

4) A component interface is used in the interoperabil-
ity mechanisms;

5) A component is an executable piece of software and
the component model either directly specifies its
form or unambiguously relates to it via interface
and interoperability specification.

Note that the items from the “lifecycle” and “con-
struction” dimensions from the classification framework
belong in the minimum criteria, while EFPs are not
included in the minimum, and many component models
do not provide that support.

There is a wide range of approaches that comply
with some of the elements in the minimum criteria.
For example, many modelling languages have “com-
ponents” and even (semi-)formally specify components
and component compositions. For instance in ADLs,
the basic elements are components [5]. UML 2.0 pro-
vides a metamodel for components, interfaces and ports.

IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID 12

Endogenous

Collaborative

Endogenous

 Systemwide

 Exogenous

Collaborative

 Exogenous

 Systemwise
 E.3

Specification

 E.2

Management

 E.1

Composition

Asynchronous

Synchronous

Communication

 Type

Interaction

 Style

 Binding

 C.2

 Interface

Specification

 C.1

Interface

 Type

 Distinction of

Provides / Requires

Distinctive

 Features

Interface

 Levels

 Interface

Language

At run-time

At compilation

Deployment

 L.4

Packaging

 L.3

Implementation

 L.2

Modelling

 L.1

Component

 Model

Lifecycle

 D.1

Construction

 D.2

Extra-Functional

 Properties

 D.3

Interactions

 C.3

 Composability

 E.3

Type

Port-based

Operation-based

Functional

 semantic

Syntactic

Behaviour

Vertical

Horizontal

Exogenous

Endogenous

Fig. 5. The hierarchical structure of the classification framework

Still, we have deliberately chosen not to select them as
component models, in contrast to other classifications
such as [12]. One reason is that their purpose is not
component-based development, but rather the specifi-
cation of system architectures, and they do not provide
any support for components as executable units. Certain
languages derived from UML, such as xUML [36], in
which the component specification is translated into
an executable entity, are even stronger candidates for
consideration as component models. However, xUML
and similar languages do not operate with components
as first class entities (for example components are not
treated as separate development or executable entities),

but again the components are treated only as architec-
tural elements.

On the other side of the lifecycle line are services. It
can be argued that services are special types of com-
ponents. Services are focused on run-time retrieval and
run-time deployment. Similar to components, services
are specified by an interface, and provide support for
construction [37]. Still, we have not included services in
the classification for similar reasons as those that applied
to ADLs — they are not defined as executable units. In
analogy to ADLs, services are not component models but
rather use component models.

IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID 13

4.1 Component models

In our classification framework, we have selected 24
component models that we encountered in the research
literature and in practice, namely:

• AUTOSAR (AUTomotive Open System ARchitec-
ture) [38],

• BIP (Behaviour, Interaction, Priority) [31],
• BlueArX [39],
• CCM (CORBA Component Model) [22],
• COMDES II (COMponent-based design of software

for Distributed Embedded Systems, version II) [40],
• CompoNETS [41],
• EJB (Entreprise JavaBeans) [21],
• Fractal [30],
• Koala [17],
• KobrA (KOmponentenBasieRte Anwendungsen-

twicklung) [19],
• IEC 61131 [28],
• IEC 61499 [42],
• JB (Java Beans) [25],
• MS COM (Microsoft Component Object Model) [23],
• OpenCOM [43],
• OSGi (Open Services Gateway Initiative) [26],
• Palladio Component Model [18],
• Pecos (PErvasive COmponent Systems) [44],
• Pin [20],
• ProCom (PROGRESS Component Model) [14],
• Robocop (Robust Open Component Based Software

Architecture for Configurable Devices Project) [15]
[45],

• Rubus [29],
• SaveCCM (SAVE Components Component Model)

[13] and
• SOFA (Software Appliances) [46].

While some of these component models are in
widespread industrial use, others are used as demon-
strators or vehicles for illustrating research ideas.

The classification framework does not show the suc-
cess of particular component models, or any business
model, but is based only on their technical characteris-
tics. The component models that we have included in
the list are briefly characterized in Appendix A. A more
detailed description of each component model with the
characteristics defined in the classification framework
can be found in the technical report [47].

For some of the component models that we found,
our selection criteria were satisfied; however, because
of the scarcity of available documentation about some
component models, it was impossible to get the neces-
sary detailed information (which usually is a sign that
no activity around the model is going on). In these cases,
we have decided to omit them from our list.

5 THE COMPARISON FRAMEWORK

The characteristics of the component models are col-
lected in the tables below, following the dimensions in
the classification framework, namely lifecycle (Table 1),

construction (Tables 2 and 3), and extra-functional prop-
erties (Table 4). Following each table, a short discussion
summing up our observations is presented.

5.1 Lifecycle classification

Table 1 shows the lifecycle dimension, indicating the
characteristics of the selected component models in dif-
ferent lifecycle stages (modelling, implementation, pack-
aging and deployment). From this table, we can observe
that the most common focus of component models is
on the implementation stage. Some component models
even exclusively support the implementation stage. Ad-
ditionally, some component models support the run-time
stage by providing a run-time platform that facilitates
run-time reconfiguration or a management of extra-
functional system properties.

The modelling stage is characterized by an extensive
use of domain-specific modelling languages, whereas
standard modelling language, such as UML or ADLs
are less common. We can also note that 32% of the
component models gathered in the framework do not
provide any support for the modelling of components
or component-based applications, but cover only the
implementation part (specification and deployment). All
these component models that omit the modelling stage
are from the state of the practice, and many of them
widely used. One can ask why component models in
practice seldom cover component and system modelling.
The reason for this can be found in the common state-
of-the-practice. In many industrial projects, designs are
expressed in a non-formal way, mainly for documenta-
tion purpose only, or in a semiformal way, possibly using
UML. In both cases, neither the precise definitions of
components nor their interactions are assumed to be of
high priority, and no high needs for modelling compo-
nents and component-based systems are expressed. This
is also an indicator of the differences between state-of-
the-art and state-of-the-practice: many solutions from the
state-of-the-art that include the modelling have still not
been realized or scaled up in practice.

Further, we can observe from Table 1 that with regards
to implementation, component models can be divided
into four groups: (i) language-independent (18%) (ii)
OO language-based (36%), with a clear dominance of
Java, (iii) C language (36%), and (iv) domain-specific
language-based (10%), either compiled to C or directly
interpreted. The dominance of OO languages is not
surprising since technologies based on the OO paradigm
are dominant today, and because many principles from
OO are directly used or further developed in CBSE.
The “C language” component models are prevailing
for domain-specific component models that target more
the development of embedded and real-time systems.
The C-language provides more and easier access to de-
tails of operating system and underlying hardware plat-
forms facilitating optimisations. Domain-specific pro-
gramming languages are tightly related to the modelling

IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID 14

TABLE 1
Classification for the Lifecycle Dimension

Component
Models

Modelling Implementation Packaging Deployment

AUTOSAR N/A C Non-formal specification of container At compilation

BIP
A 3-layered representation:

behaviour, interaction, and priority
BIP Language N/A At compilation

BlueArX ASCET-MD models C Packages At compilation

CCM N/A Language independent JARs, DLLs At run-time

COMDES II ADL-like language C N/A At compilation

CompoNETS Petri Nets Language independent JARs, DLLs At run-time

EJB N/A Java JARs At run-time

Fractal
ADL-like language

(Fractal ADL, Fractal IDL),
Annotations (Fractlet)

Java (Julia, Aokell)
C/C++ (Think)
.Net lang. (FracNet)

File system based repository At run-time

Koala
ADL-like languages
(IDL,CDL and DDL)

C File system based repository At compilation

KobrA UML Profile Language independent N/A N/A

IEC 61131
Function Block Diagram (FBD)

Ladder Diagram (LD)
Sequential Function Chart (SFC)

Structured Text (ST)
Instruction List (IL)

N/A At compilation

IEC 61499 Function Block Diagram (FBD) Language independent N/A At compilation

JavaBeans N/A Java JARs At compilation

MS COM N/A OO languages DLLs
At compilation and

at run-time

OpenCOM N/A OO languages DLLs At run-time

OSGi N/A Java JARs
At compilation and

at run-time

Palladio
Meta-model based specification

language
Language independent

(specific support for Java)
N/A N/A

PECOS ADL-like language (CoCo) OO languages JARs, DLLs At compilation

Pin ADL-like language (CCL) C DLLs At compilation

ProCom
Meta-model based specification

language
REMES

C File system based repository At compilation

ROBOCOP
Meta-model based specification

language
Resource management model

C and C++ ZIP file
At compilation and

at run-time

RUBUS Rubus Design Language C File system based repository At compilation

SaveCCM
ADL-like (SaveComp)

Timed automata
C, Java File system based repository At compilation

SOFA 2.0
Meta-model based specification

language
Java File system based repository At run-time

of component-based systems and components, and ob-
viously used for a more efficient design and implemen-
tation.

Packaging and component repositories are not the
main focus of component models. In most cases, certain
standard archives are used (such as DLL or JAR pack-
ages), also as deployment units. The lack of repositories
indicates a low focus on reuse, in particular of COTS
components.

Deployment at compile time and run-time almost
occurs to an equal extent among the component models
being studied. Deployment at compile time limits the
flexibility at run-time, but on the other hand enables
easier predictability, richer composition features (such as
hierarchical composition), and more efficient reuse (such
as deployment of implementation parts that will be used
in the application). This might be a reason why this

is the primary deployment style chosen by specialized
component models (see Table 5).

5.2 Construction classification

Table 2 presents the interface characteristics of the
selected component models, and Table 3 the binding
and interaction specifications. Table 2 shows that most
of the interfaces are of the operation-based type, which
means that the component models use methods and
parameters for defining interface signatures. Still, many
component models use ports as the interface elements
to exchange data. In port-based interfaces, input and
output interfaces consist of ports that receive and send
data, respectively (often designated as sink and source),
hence corresponding to the concepts of provided and
required interface. Such component models are typically
used in embedded systems and have their basis in

IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID 15

TABLE 2
Classification for the Construction Dimension – Interface Specification

Component
Models

Interface type

Distinction
of

Provides/
Requires

Distinctive features Interface Language

Interface
Levels

(Syntactic,
Semantic,

Behaviour)

AUTOSAR
Operation-based

Port-based
Yes AUTOSAR interface C header files Syntactic

BIP
Operation-based

Port-based
No

Complete interface
Incomplete interface

BIP Language
Syntactic
Semantic

Behaviour

BlueArX Port-based Yes
Configuration interface

Analytic interface
XML adhering to the MSRSW DTD Syntactic

CCM
Operation-based

Port-based
Yes

Facet and receptacle
Event sink and event source

CORBA IDL (CIDL) Syntactic

COMDES II Port-based Yes N/A
C header files

State charts diagrams
Syntactic

Behaviour

CompoNETS
Operation-based

Port-based
Yes

Facet and receptacle
Event sink and event source

CORBA IDL (CIDL)
Petri nets

Syntactic
Behaviour

EJB Operation-based No N/A
Java Programming Language +

Annotations
Syntactic

Fractal Operation-based Yes
Component interface

Control interface
IDL, Fractal ADL, Java or C

Behavioural Protocol
Syntactic

Behaviour

Koala Operation-based Yes
Diversity interface
Optional interface

IDL, CDL Syntactic

KobrA Operation-based N/A N/A UML Syntactic

IEC 61131 Port-based Yes N/A N/A Syntactic

IEC 61499 Port-based Yes
Data
Event

N/A Syntactic

JavaBeans Operation-based Yes N/A Java Syntactic

MS COM Operation-based No Ability to extend interface Microsoft IDL Syntactic

OpenCom Operation-based No
Interfaces additional to COM-interface
managing lifecycle, introspections, etc.

Microsoft IDL Syntactic

OSGI Operation-based Yes Dynamic interface Java Syntactic

Palladio Operation-based Yes Parametrization
Palladio language (similar to

CORBA IDL)
Syntactic

Behaviour

PECOS Port-based Yes Ability to extend interface
Coco language
Prolog query

Petri nets

Syntactic
Semantic

Behaviour

Pin Port-based Yes N/A
Component Composition Language

(CCL), UML statechart
Syntactic

Behaviour

ProCom Port-based Yes
Data and trigger port

Message port
XML based,

REMES
Syntactic

Behaviour

Robocop Port-based Yes Ability to extend and annotate interface
Robocop IDL (RIDL),
Protocol specification

Syntactic
Behaviour

RUBUS Port-based Yes Data and trigger port C header files Syntactic

SaveCCM Port-based Yes Data, trigger, and data-trigger port
SaveComp (XMLbased)

Timed Automata
Syntactic

Behaviour

Sofa 2.0 Operation-based Yes
Utility interface

Possibility to annotate interface and
control evolution

Java
SPC algebra

Syntactic
Behaviour

hardware components. Several of the component models
examined do not distinguish required from provided
interfaces, but their interface is referred only to the “pro-
vided” interface, which is similar to what exists in the
object-oriented approach. These component models are
essentially used in practice, and are developed earlier,
even on the way to becoming obsolete (like MS COM,
for example). They illustrate the evolution of CBSE.

Because interfaces are a mandatory part of the com-
ponent specification, all component models provide at
least the first level, i.e. syntactic specification. A consider-
able number of component models also have behaviour

specifications, in most cases represented by a particular
form of finite state machines (statecharts or timed au-
tomata). Here we distinguish behaviour specification of
components (used for the modelling and predictability
of the behaviour of the system), from specifications used
for synchronization (for the communication between the
components). In a few cases, component models allow
behaviour specification with resource consumption to
be combined, or some other attribute specifications,
which makes it possible to model resource usage or
performance or some other properties. Examples of such
component models are Palladio, SaveCCM, ProCom,

IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID 16

TABLE 3
Classification for the Construction Dimension – Binding and Interactions

Binding InteractionsComponent
Models Exogenous Vertical Interaction Styles Communication Type

AUTOSAR No Delegation Request-Response, Sender-Receiver Synchronous, Asynchronous

BIP No Delegation
Triggering,

Rendez-vous, Broadcast
Synchronous, Asynchronous

BlueArX No Delegation Sender-Receiver, Request-Response Synchronous, Asynchronous

CCM No No Request-Response, Triggering Synchronous, Asynchronous

COMDES II No No Pipe&filter Synchronous

CompoNETS No No Request-Response Synchronous, Asynchronous

EJB No No Request-Response Synchronous, Asynchronous

Fractal Yes Delegation, Aggregation Multiple interaction styles Synchronous, Asynchronous

Koala No Delegation, Aggregation Request-Response Synchronous

KobrA No Delegation, Aggregation Request-Response Synchronous

IEC 61131 No Delegation Pipe&filter Synchronous

IEC 61499 No Delegation Triggering, Pipe&filter Synchronous

JavaBeans No No Request-Response, Triggering Synchronous

MS COM No Delegation, Aggregation Request-Response Synchronous

OpenCOM No Delegation, Aggregation Request-Response Synchronous

OSGi No No Request-Response, Triggering Synchronous

Palladio Yes Delegation Request-Response Synchronous, Asynchronous

PECOS No Delegation Pipe&filter Synchronous

Pin No No
Request-Response,

Message passing, Triggering
Synchronous, Asynchronous

ProCom Yes Delegation Pipe&filter, Message passing Synchronous, Asynchronous

Robocop No No Request-Response Synchronous, Asynchronous

Rubus No No Pipe&filter Synchronous

SaveCCM No Delegation, Aggregation Pipe&filter Synchronous

SOFA 2.0 Yes Delegation Multiple interaction styles Synchronous, Asynchronous

and Pin.
Only few component models offer support for defin-

ing the functional semantic level of interfaces. If there is
support, then this is mostly addressed through the use
of pre- and post-conditions.

Table 3 (binding and interactions) shows that binding
mechanisms in component models are in most of the
cases of the endogenous type — i.e. connectors are not
defined as particular architectural elements. However,
many component models use components as connectors
or the connectors are automatically generated in the
integration/deployment stage and are not being used as
entities for modelling.

From Table 3, we can observe that many component
models do not support vertical binding. Vertical bind-
ing is implemented either through delegated interfaces
(i.e. selected interfaces from sub-components build up
the interface of the composite components) or as ag-
gregation in which the composite component includes
all the interfaces of the aggregated components. Very
few component models provide means of hierarchical
composition, and if so, then it is only with regards to
few particular EFPs (for example BIP and SaveCCM for
timing properties).

From the information in Table 3, one can conclude that

the dominating interaction styles in component models
are “request-response” (typically used in client/server
architectures), and “pipe & filter”. Some component
models even have additional interaction styles such as
event-driven, broadcast or rendez-vous. The choice of
the interface style is strongly correlated to the interface
type (operation vs. port-based) provided by the compo-
nent model.

The dominant communication type in component
models is synchronous. Component models that provide
support for asynchronous communication also support
synchronous communication. This indicates that com-
ponent models are not concerned with architecture (ar-
chitectural design), but rather with targeting detailed
design.

5.3 Extra-functional properties classification

Table 4 summarizes the characteristics of the selected
component models with respect to EFPs. We observe
that many component models provide certain support
for the management of EFPs, either system-wide or per
container (characteristic examples are redundancy, or au-
thentication support). In several cases, a particular EFP

IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID 17

TABLE 4
Classification for the Extra-Functional Properties Dimension

Component
Models

Management of EFP EFP specification Composability of EFP

AUTOSAR Endogenous per collaboration (A) N/A N/A

BIP Endogenous system wide (B) Timing properties Behaviour compositions

BlueArX Endogenous system wide (B) Resource usage and timing properties Reasoning frameworks

CCM Exogenous system wide (D) N/A N/A

COMDES II Endogenous system wide (B) Timing properties N/A

CompoNETS Endogenous per collaboration (A) N/A N/A

EJB Exogenous system wide (D) N/A N/A

Fractal Exogenous per collaboration (C)
Ability to add property

(by adding property controller)
N/A

Koala Endogenous system wide (B) Resource usage Compile time checks of resources

KobrA Endogenous per collaboration (A) N/A N/A

IEC 61131 Endogenous per collaboration (A) N/A N/A

IEC 61499 Endogenous per collaboration (A) N/A N/A

JavaBeans Endogenous per collaboration (A) N/A N/A

MS COM Endogenous per collaboration (A) N/A N/A

OpenCOM Endogenous per collaboration (A) N/A N/A

OSGi Endogenous per collaboration (A) N/A N/A

Palladio Endogenous system wide (B)
Performance, reliability, resource usage,

system-level usage properties
Performance and reliability

PECOS Endogenous system wide (B)
Generic specification of properties

including timing properties
N/A

Pin Exogenous system wide (D)
Timing properties (by adding analytic

interface)
Different EFP composition theories

(ex: latency)

ProCom Endogenous system wide (B)
Generic specification of properties

including timing and resource usage
Timing and resource usage properties

at design and compile time

ROBOCOP Endogenous system wide (B)
Memory consumption, timing

properties, reliability
Ability to add other properties

Memory consumption and timing
properties at deployment

RUBUS Endogenous system wide (B) Timing properties Timing properties at design time

SaveCCM Endogenous system wide (B)
Generic specification of properties

including timing properties
Timing properties at design time

SOFA 2.0 Endogenous system wide (B) Behavioural (protocols) Composition at design

support is implemented as an extension to a standard
technology (for example COM+ used in MS COM and
.NET technologies). However, a smaller number of com-
ponent models have formalisms for EFP specifications.
A significantly smaller number of component models
provides means for the composition of EFPs. This is par-
ticularly true for commercial component models. Clearly,
the composition of EFPs still belongs to the research
challenges. A majority of EFPs that are managed by
component models belong to resource usage and timing
properties.

6 COMPONENT MODELS AND DOMAINS

The characteristics listed in the classification framework
show some patterns: similar solutions belong to com-
ponent models from similar application domains, as
for instance embedded systems or information systems.
That is to say that the requirements from the application
domain penetrate into the component model. Such com-
ponent models are, as a consequence, specialised and

not so usable in domains that are subject to different
requirements.

The other type of component models that have similar
solution patterns are general-purpose component mod-
els. They provide basic mechanisms for the specification
and composition of components, but do not assume
any specific architecture beyond general assumptions
(like interaction style, support for distributed systems,
compilation or run-time deployment). A general solution
that enables component models to be both generally
applicable and to cater for specific domains is the use
of optional frameworks.

According to this, we distinguish the component mod-
els as:

• general-purpose component models;
• specialized component models.

Table 5 lists the selected component models according
to their dominant use in particular domains.

We see that the distribution between general-purpose
component models and specialized component models

IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID 18

TABLE 5
General-purpose and domain-specific component models

Domain A
U

T
O

S
A

R

B
IP

B
lu

e
A

rX

C
C

M

C
O

M
D

E
S

II

C
o

m
p

o
N

E
T

S

E
JB

3
.0

F
ra

ct
a
l

K
o

a
la

K
o

b
rA

IE
C

6
1
1
3
1

IE
C

6
1
4
9
9

Ja
v

a
B

e
a
n

s

M
S

C
O

M

O
p

e
n

C
O

M

O
S

G
i

P
a
ll

a
d

io

P
E

C
O

S

P
in

P
ro

C
o

m

R
o

b
o

co
p

R
u

b
u

s

S
a
v

e
C

C
M

S
O

F
A

2
.0

General-
purpose

X X X X X X X X X X X

Specialised X X X X X X X X X X X X X

is equal. It is likely that there are more specialized,
proprietary component models that are not published.
We have also observed a migration of certain component
models. For example, OSGi was originally designed for
embedded systems, but later has been used as general-
purpose component model in different domains. Con-
versely, general-purpose component models have been
adapted for particular domains by the addition of new
features or by applying some restriction to certain func-
tions.

Specialized component models from our selection be-
long to two domains: a) embedded systems, and b) dis-
tributed information systems. Component models from
the embedded systems domain have some common
characteristics: the “pipe & filter” interaction style is
used, components are usually deployable at compilation
time, resource-aware, and often there is support for
the management of timing properties. These component
models are significantly different from general-purpose
component models. The component models from the in-
formation systems domains are more similar to general-
purpose component models. Typically, they have similar
characteristics as general-purpose component models,
such as the use of “request-response” interaction style,
support for run-time deployment, expandable interface,
and implementation in object-oriented languages. Com-
ponent models that target information systems differ
from general-purpose component models through spe-
cific support for distributed components, data transac-
tion support, interoperability with databases, and some
architectural solutions such as redundancy or location
transparency. In some cases, an extension of a component
model is used for its specialization (for example, COM+
is an addition to COM used for distributed component-
based systems).

Some general-purpose component models have a spe-
cial feature; they have mechanisms for generating new
component models. They provide a set of common prin-
ciples and mechanisms to add new features, or change
the existing ones (for example different implementation
mechanisms for bindings or interactions). An example of
these “generative” component models is Fractal. Fractal
supports several variants of particular component model
elements — for example, different type of binding and
interaction, and the use of different programming lan-
guages (Fractal has Java-based and C-based implemen-
tations). Another example of such component model is
Robocop. It provides a mechanism for adding different

elements of the model (such as modeling languages,
implementations, metadata in a form of documentation,
and management for EFPs). A particular instance of a
Robocop is a component model that includes selected
elements.

From the characteristics defined in the tables we can
observe that although there are many component mod-
els, they show similar patterns within the same or related
domains. We can conclude that this gives us a good basis
to converge different component models into a smaller
number of component models dedicated to domain-
specific requirements.

7 RELATED WORK

Over the last decade, several attempts have been made
to identify key features of aspects of component soft-
ware approaches: classification studies of components
and interfaces ([48], [49]), interfaces, extra-functional
properties ([10]), ADLs ([5]), component models ([12]),
and characteristics of component models for particular
business domains ([11]), among others.

The work presented in [48] and [49] does not consider
any component model but rather focuses on practical
issues of component utilisation and reutilization. In [48],
the interface classification is split into two categories: ap-
plication interfaces and platform interfaces. Application
interfaces describe the information about the interaction
with other components (messages protocol, timing issues
to requests) whereas the platform aspect concentrates on
the interaction between components and the executing
platform. Similarly in [49] a model for characterizing
components is proposed which reuses the classification
model of interfaces from [48], where: a component is
regarded as the description of three main items (informal
description, externals and internals) each of them split
into several subelements. The informal description is
connected with a set of features that relates to the use
of a component in a team and over time. These features
can influence the selection of a component such as: its
age, its provenance, its level of reuse, its context, its
intent and if there is any related component solving a
similar problem. The externals are concerned with inter-
action mechanisms both with other application artifacts
and with the platform (application interfaces, platform
interfaces, role, integration phase, integration frame-
works, technology and non-functional features). Finally
the internals are concerned with elements related to the

IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID 19

potential information needed during the development
process of a system (nature, granularity, encapsulation,
structural aspects, behavioural aspects, accessibility to
source code).

A classification that is similar in spirit to our work, is
proposed in [50]. The classification framework presented
in [50] attempts to determine the core features of a
software component. This classification is different from
ours: it includes the identification of a component by
a set of elements/characteristics (unit of composition,
reuse, interface, interoperability, granularity, hierarchy,
visibility, composition, state, extensibility, marketability,
and support for OO). The classification includes only
business components and business solutions. One of the
problems with this classification is the non-orthogonality
of some of the characterized items.

In [5], where ADLs are classified, components are
defined as basic elements of ADLs. The components are
distinguished by the following features: interface, types,
semantics, constraints, evolution, and non-functional
properties.

In [11], a classification model is proposed to structure
the CBSE body of knowledge. All research results are
characterized according to several aspects (concepts, pro-
cesses, roles, product concerns and business concerns,
technology, off-the-shelf components and related devel-
opment paradigms). Here, the component model is only
considered as one of the fifty elements among the CBSE
items. However, in this work, a more precise taxonomy
of application domains is proposed. The paper identifies
the following application domains in which component-
based approaches are utilized: avionics, command and
control, embedded systems, electronic commerce, fi-
nance, healthcare, real-time, simulation, telecommunica-
tions and, utilities.

In [8], several component models (JB, COM, MTS,
CCM, .NET and OSGI) are mainly described according
to the following criteria: interfaces and assembly us-
ing ACME notation, implementation, and lifecycle. The
models are not compared or evaluated, but rather these
characteristics are described for each component model.

In [12], a study of several component models is
presented that considers the following aspects: syn-
tax, semantics and composition through an idealized
component-based development lifecycle. A smaller num-
ber of component models are considered (also UML and
ADLs are included). Based on this study, a taxonomy
centered on the composition criterion is proposed, which
clarifies at which steps of the development process of a
given component model, components can be composed
and whether they can be retrieved from a repository to
be composed. Furthermore, the different types of bind-
ings (compositions) of some of the component models
are discussed in more detail. This taxonomy does not
consider EFPs.

8 CONCLUSION

In this survey, we have presented a framework for
the classification and comparison of component models.
This survey indicates that many principles comprised in
the component-based approach are not always included
in every component model. Hence, there is no complete
set of principles that applies to all component models.
Many of the principles used in component models are
taken and further developed from other approaches (OO
development, ADLs), which provided diverse solutions
for similar approaches.

The intention of this work is to increase understanding
of the component-based approach by identifying the
main concerns, common characteristics and differences
of component models. The proposed framework does
not include all the elements of all component models
since many of them have unique solutions — some
related to models, some related to particular technology
solutions. However, the framework identifies the mini-
mal criteria for considering a model to be a component
model, and it groups the basic characteristics of compo-
nent models and enables a more systematic approach in
their analysis and comparison.

From the results, we can recognize some recurrent
patterns, such as: general-purpose component models
utilize the “request response” style, while in the special-
ized domains (mostly embedded systems) “pipe & filter”
is the predominate style. We can also observe that the
support for composition of extra-functional properties
is rather scarce. There are several reasons for that: in
practice, explicit modelling and reasoning about of EFPs
is still not widespread. Furthemore, there are many
different EFPs and many of them are not composable, or
not directly composable but depend of external factors,
like underlying platform, usage scenario, or a content
in which the system is running. On the other hand
a support for managing EFPs is a common feature of
component models.

Based on experiences coming from other technologies,
we could expect a convergence of the main characteris-
tics of component models, i.e. that they become more
standardized, using more commonly accepted concepts
and terminology, even if the number of different compo-
nent models will not necessarily decrease. The aim of this
work is to provide a help in this convergence process.

APPENDIX A
SURVEY OF COMPONENT MODELS

In this appendix, we provide a brief overview of compo-
nent models taken in the survey and their main charac-
teristics. The component models are listed in the alpha-
betic order. The list should be understood as a provision
of some characteristic examples, or examples of widely
used component models in Software Engineering.

Note that when listing the component models we have
not provided their product name with edition number
except for cases in which the edition numbers are part

IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID 20

of the name or indicate significant difference from the
previous version.

AUTOSAR (AUTomotive Open System ARchitec-
ture) [38], the new standard in automotive industry is the
result of the partnership between several manufacturers
and suppliers from the automotive field. The main focus
of AUTOSAR is standardization of architecture, archi-
tectural components and their interoperability, which
allows a separation of development of component-based
applications from the underlying platform. AUTOSAR
supports both the client-server and sender-receiver com-
munication types. An AUTOSAR software component
instance is only assigned to one computer node - Elec-
tronic Control Unit (ECU). The AUTOSAR software
components are implemented in C. The main focus of
AUTSOAR is the architecture not the component model
itself.

BIP (Behaviour, Interaction, Priority) [31] framework
developed at Verimag is used for modelling heteroge-
neous real-time components. This heterogeneity is con-
sidered for components having different synchroniza-
tion mechanisms (broadcast/rendez-vous), timed com-
ponents or non-timed components. BIP focuses on com-
ponent behaviour through a model with a three-layer
structure of the components (Behaviour, Interaction and
Priority); a component can be seen as a point in this
three-dimensional space constituted by each layer. In this
model, compound components, i.e components created
from already existing ones, and systems are obtained
by a sequence of formal transformations in each of the
dimension. BIP comes up with its own programming
language but targets C/C++ execution. Some connec-
tions to the analysis tools of the IF-tool set [51] and the
PROMETHEUS tools [52] are also provided.

BlueArX [39] is a component model developed and
used by Bosch for the automotive control domain.
BlueArX defines a hierarchical component model with
focus on design-time, which does not require additional
run-time or memory resources on the target hardware.
A BlueArX component consists of specification, docu-
mentation and implementation (as object or C source
code). Modelling is usually done using ASCET–MD7

models. Implementation is done in C. Components are
delivered as so called packages, and are both exchanged
between Bosch teams and shipped to customers in this
format. BlueArX interfaces are specified using MSRSW
(Manufacturer Supplier Relationship Software), a stan-
dardized XML format. Components communicate us-
ing client-server and sender-receiver interfaces. Besides
name and type the interfaces specification lists additional
details (e.g. mapping between internal and physical
representation, value range, and physical unit). Other
interfaces address component configuration (variation
points), calibration data and extra-functional properties,
like timing, memory usage or generic specification of

7. A software modelling tool developed by the ETAS group
http://www.etas.com

other properties.
COMDES II (COMponent-based design of software

for Distributed Embedded Systems, version II) [40],
developed at University of Southern Denmark, defines
various types of components to address both archi-
tectural and behavioral properties of control software
systems. It employs a two-level model to specify system
architecture. At the first (system) level a distributed
control application is conceived as a network of com-
municating actors and at the second (actor) level an
actor is specified as a software artifact containing a
single actor task and multiple I/O drivers. The func-
tional behaviour is specified by a composition of differ-
ent function block instances which implement concrete
computation or control algorithms. COMDES II defines
four kinds of functional blocks: basic, composite, modal
and state machine. The former two can be used to
model continuous behaviour (data flow) and the later
two describe the sequential behaviour (control flow). All
non-functional information such as physicality, real-time
and concurrency is specified with respect to actors.

CompoNETS [41], developed at Université Toulouse
1, is based on CCM where additionally the internal
behaviour of a software component and intercomponent
communication are specified by Petri Nets. Accordingly,
a mapping from the constructs of the component models
(e.g. facets, receptacles, event sources and sinks) to the
constructs of Petri-net based behavioral formalism (e.g.
places, transitions etc.) is defined. Other characteristics
are the same (or very similar) to CCM.

CCM (CORBA Component Model) [22] evolved from
Corba object model and it was introduced as a basic
model of the OMGs component specification. The CCM
specification defines an abstract model, a programming
model, a packaging model, a deployment model, an
execution model and a metamodel. The metamodel de-
fines the concepts and the relationships of the other
models. CORBA components communicate with outside
world through ports. CCM uses a separate language for
the component specification: Interface Definition Lan-
guage (IDL). CCM provides a Component Implementa-
tion Framework (CIF) which relies on Component Im-
plementation Definition Language (CIDL) and describes
how functional and nonfunctional part of a compo-
nent should interact with each other. In addition, CCM
uses XML descriptors for specifying information about
packaging and deployment. Furthermore, CCM has an
assembly descriptor which contains metadata about how
two or more components can be composed together.

EJB (Entreprise JavaBeans) [21], developed by Sun
MicroSystems envisions the construction of object-
oriented and distributed business applications. It pro-
vides a set of services, such as transactions, persistence,
concurrency, interoperability. EJB differs three different
types of components (The EntityBeans the SessionBean
and the MessageDrivenBeans). Each of these beans is
deployed in an EJB Container which is in charge of
their management at runtime (start, stop, passivation or

IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID 21

activation) and EFPs (such as security, reliability, perfor-
mance). EJB is heavily related to the Java programming
language.

Fractal [30] is a component model developed by
France Telecom R&D and INRIA. It intends to cover the
whole development lifecycle (design, implementation,
deployment and maintenance/management) of complex
software systems. It includes several features, such as
nesting, sharing of components and reflexivity in that
sense that a component may respectively be created
from other components, be shared between components
and can expose its internals to other components. The
main purpose of Fractal is to provide an extensible,
open and general component model that can be tuned
to fit a large variety of applications and domains. Fractal
includes different instantiations and implementations: a
C-implementation called Think, which targets especially
the embedded systems and a reference implementation,
called Julia and written in Java.

Koala [17] is a component model developed by Philips
for building software for consumer electronics. Koala
components are units of design, development and reuse.
Koala has a set of modelling languages: Koala IDL is
used to specify Koala component interfaces, its Compo-
nent Definition Language (CDL) is used to define Koala
components, and Koala Data Definition Language (DDL)
is used to specify local data of components. Koala com-
ponents communicate with their environment or other
components only through explicit interfaces statically
connected at design time. Koala targets C as implemen-
tation language and uses source code components with
simple interaction model. Koala pays special attention to
resource usage such as static memory consumption.

KobrA (KOmponentenBasieRte Anwendungsen-
twicklung) [19] is a hierarchical component model that
supports a model-driven, UML-based representation of
components. In KobrA components are not physical
components like in the contemporary physical
technologies (e.g. CORBA, EJB, .NET) but logical
building blocks of the software system. The components
can be constructed in any UML modelling tool and
deposited into a file system. They can be compared
to subsystems in UML with additional behaviour.
KobrA uses UML class diagrams to specify structure,
functional model to describe functionality and finally the
behavioral model describes the component behaviour.
Composition of components is done in the design phase
by direct method calls.

IEC 61131 [28] is a standard for the design of Pro-
grammable Logic Controllers approved by the Interna-
tional Electrotechnical Commission (IEC). In this stan-
dard, the software units are called function blocks and
based on incoming events, they execute some algorithms
to update the internal variables. This standard has been
further extended to IEC 61499 [42] which provides dis-
tribution in the runtime environment through high-level
abstraction of communication primitives. IEC 61499 is
an open communication standard for distributed control

systems.
JB (Java Beans) [25] developed by Sun Microsys-

tems is based on Java programming language. In the
JavaBeans specification a bean is a reusable software
component that can be visually composed into applets,
applications, servlets, and composite components, using
visual application builder tools. Programming a Java
component requires definition of three sets of data: i)
properties (similar to the attributes of a class); ii) meth-
ods; and iii) events which are an alternative to method
invocation for sending data. JavaBeans was primarily
designed for the construction of graphical user interface.
The model defines three types of interaction points,
referred to as ports: (i) methods, as in Java, (ii) properties,
used to parameterize the component at composition
time, (iii) event sources, and event sinks (called listeners)
for event-based communication.

COM (Microsoft Component Object Model) [23] is
one of the most commonly used software component
models for desktop and server side applications. A
key principle of COM is that interfaces are specified
separately from both the components that implement
them and those that use them. COM defines a dialect of
the Interface Definition Language (IDL) that is used to
specify object-oriented interfaces. Interfaces are object-
oriented in the sense that their operations are to be
implemented by a class and passed a reference to a
particular instance of that class when invoked. A concept
known as interface navigation makes it possible for the
user to obtain a pointer to every interface supported by
the object. This is based on VTable. Although COM is
primarily used as a general-purpose component model it
has been ported for development of embedded software
and extended for distributed information systems

OpenCOM [43] is a lightweight component model de-
veloped at Lancaster University which aims at exploiting
component-based techniques within middleware plat-
forms. It is built atop a subset of Microsofts COM.
These include the binary level interoperability standard,
Microsofts IDL, COMs globally unique identifiers and
the IUnknown interface. The higher level features of
COM such as distribution, persistence, transactions and
security are not used. The key concepts of OpenCOM
are capsules, components, interfaces, receptacles and
connections. Capsules are runtime containers and they
host components. Each component implements a set of
custom receptacles and interfaces. A receptacle describes
a unit of service requirement, an interface expresses a
unit of service provision, and a connection is the binding
between an interface and a receptacle of the same type.

OSGi (Open Services Gateway Initiative) [26] is
a consortium of numerous industrial partners working
together to define a service-oriented framework with an
open specifications for the delivery of multiple services
over wide area networks to local networks and devices.
Contrary to most component definitions, OSGI emphasis
the distinction between a unit of composition and a
unit of deployment in calling a component respectively

IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID 22

service or bundle. It offers also, at contrary to most com-
ponent models, a flexible architecture of systems that can
dynamically evolve during execution time. This implies
that in the system, any components can be added, re-
moved or modified at run-time. In relying on Java, OSGI
is platform independent. There exists several additions
of OSGi that provides additional characteristics.

Palladio Component Model [18], developed at Karl-
sruhe Institute of Technology and FZI Karlsruhe, is a
modelling language for component-based software ar-
chitectures, which is tuned to enable early life-cycle
performance and reliability predictions. Palladio defines
its own metamodel specified in EMF/Ecore and divided
into several domain specific languages for each devel-
oper role (i.e. component developers, software architects,
system deployers and domain experts). All specifications
can be combined to derive a full Palladio component
model instance. As a starting point for implementing
the systems business logic, the instance can be converted
into Java code skeletons via Model2Text transformation.
Components are specified via provided and required
interfaces which consist of a list of service signatures.
To allow accurate performance prediction, a so called
resource demanding service effect specification can be
added to each provided service to describe the sequence
of called required services, resource usage, transition
probabilities, loop iteration numbers, and parameter de-
pendencies. Components and their roles can be con-
nected via assembly connectors to build an assembly.
Assemblies themselves can be assembled to structure a
system hierarchically.

Pecos (PErvasive COmponent Systems) [44] is a
joined project between ABB Corporate Research and
Bern University. Its goal is to provide an environment
that supports specification, composition, configuration
checking and deployment for reactive embedded sys-
tems built from software components. There are two
types of components, leaf components and composite
components. The inputs and outputs of a component are
represented as ports. At design phase composite compo-
nents are made by linking their ports with connectors.
Pecos targets C++ or Java as implementation language,
so the run-time environment in the deployment phase
is the one for Java or C++. Pecos enables specification
of EFPs such as timing and memory usage in order to
investigate in prediction of the behaviour of embedded
systems.

Pin [20] component model, developed at Carnegie
Mellon Software Engineering Institute (SEI), is used as
a basis in prediction-enabled component technologies
(PECTs). It aims at achieving predictability by construc-
tion i.e. constraining the design and the implementation
to analyzable patterns. To achieve predictability of a
particular property PECT proposes a building of a rea-
soning framework that includes a component technology
powered by analytical interface used for a specification
of a property of interest and analysis theory used in
provision of the system property composed from compo-

nent properties. Accordingly to perform analysis, proper
theories must be found and implemented in a suit-
able underlying component technology. PECT currently
supports three reasoning frameworks for Pin Compo-
nent model: for predicting average latency in assemblies
with periodic tasks, for predicting average latency in
stochastic tasks managed by a sporadic server and for
formal verification of temporal safety and liveness. Pin
Components are defined in an ADL-like language, in the
“component and connector style”, so called Construction
and Composition Language (CCL). Pin components are
fully encapsulated, so the only communication channels
from a component to its environment and back are sink
and source pins. Composition of components is obtained
by connecting source and sink pins and the behaviour
of the interaction, which is specified as executable state
machines.

ProCom (PROGRESS Component Model) [14] is a
component model for control-intensive distributed em-
bedded systems being developed at PROGRESS Strategic
Research Center at Mälardalen University, Sweden. Pro-
Com consists of two layers, in order to address different
concerns that exist at different levels of a distributed
embedded system. The upper layer, ProSys, focuses on
modelling of the whole system or large subsystems. It
considers complex active subsystems as components and
captures the message flow between them. The lower
layer, ProSave, serves for modelling of ProSys com-
ponents on a detailed level. It explicitly captures the
data transfer and control-flow between the components
using a rich set of connectors which makes a platform
for modelling control loops in a way that allows them
to be easily analyzed and synthesized. The analysis
is facilitated by the explicit control-flow and by the
abstraction provided by components (read-execute-write
semantics, encapsulation). In ProCom, the functional and
extra-functional behaviour (such as timing and resource
consumption) of components may be described in a
dense time state-based hierarchical modelling language
called REMES (REsource Model for Embedded Sys-
tems) [53]. Further, ProCom considers deployment as a
specific activity which includes components allocations,
transformation of components to the entities complied
with the execution model, and synthesis, i.e. creation of
a glue code.

Robocop (Robust Open Component Based Software
Architecture for Configurable Devices Project) [15]
is a component model developed by the consortium of
the Robocop ITEA project, inspired by COM, CORBA
and Koala component models. It aims at covering all the
aspects of the component-based development process
for the high-volume consumer device domain. Robocop
component is a set of possibly related models and each
model provides particular type of information about the
component. The functional model describes the func-
tionality of the component, whereas the extra-functional
models include modelling of timeliness, reliability, safety,
security, and memory consumption. Robocop compo-

IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID 23

nents offer functionality through a set of services and
each service may define several interfaces. Interface def-
initions are specified in a Robocop Interface Definition
Language (RIDL). The components can be composed
of several models, and a composition of components is
called an application. The Robocop component model is
a major source of for ISO standard ISO/IEC 23004-1:2007
Information technology - Multimedia Middleware.

Rubus [29] component was developed as a joint
project between Arcticus Systems AB and Mälardalen
University. The Rubus component model runs on top
of the Rubus real-time operating system. It focuses
on the real-time properties and is intended for small
resource constrained embedded systems. Components
are implemented as C functions performed as tasks. A
component specifies a set of input and output ports,
persistent states, timing requirements such as release
time, deadline. Components can be combined to form
a larger component which is a logical composition of
one or more components.

SaveCCM (SAVE Components Component Model)
[13], developed within the SAVE project by several
Swedish universities, is a component model specifically
designed for embedded control applications in the auto-
motive domain with the main objective of providing pre-
dictable vehicular systems. SaveCCM is a simple model
that constrains the flexibility of the system in order to
improve the analysability of the dependability and of the
real-time properties. The model takes into consideration
the resource usage, and provides a lightweight run-time
framework. For component and system specification
SaveCCM uses “SaveCCM language” which is based
on a textual XML syntax and on a subset of UML2.0
component diagrams.

SOFA (Software Appliances) [46] is a component
model developed at Charles University in Prague. A
SOFA component is specified by its frame and archi-
tecture. The frame can be viewed as a black box and
it defines the provided and required interfaces and its
properties. However a framework can also be an as-
sembly of components in a composite component. The
architecture is defined a grey-box view of a component,
as it describes the structure of a component until the
first level of nesting in the component hierarchy. SOFA
components and systems are specified by an ADL-like
language, Component Description Language (CDL). The
resulting CDL is compiled by a SOFA CDL compiler
to their implementation in a programming language
C++ or Java. SOFA components can be composed by
method calls through connectors. The SOFA 2.0 com-
ponent model is an extension of the SOFA component
model with several new services: dynamic reconfigu-
ration, control interfaces and multiple communication
styles between the components.

ACKNOWLEDGMENTS

This work was partially supported by the Swedish Foun-
dation for Strategic Research via the strategic research

centre PROGRESS and Q-ImPrESS research project (FP7-
215013) by the European Union under the Information
and Communication Technologies priority of the Sev-
enth Research Framework Programme. We would also
like to thank a number of researchers and industrial ex-
perts, in particular Kurt Wallnau, (SEI/Carnegie Mellon
University), Colin Atkinson (Mannheim University), Jan
Carlson (Mälardalen University), Kung-Kiu Lau (Manch-
ester University), Herman Martin (Robert Bosch), Ralf
Reussner (Karlsruhe University), Heinz Schmidt (RMIT
University), Christian Zeidler (ABB Research) for their
valuable comments, and the anonymous reviewers who
have read previous versions of this paper and provided
constructive suggestions.

REFERENCES

[1] B. Meyer, “What to Compose,” In the Beyond Objects
Column of Software Development Magazine, March 2000,
http://www.ddj.com/architect/184414588, last access:
23/11/2009.

[2] C. Szyperski, Component Software: Beyond Object-Oriented Program-
ming. Addison-Wesley Professional, December 1997.

[3] G. T. Heineman and W. T. Councill, Component-Based Software
Engineering: Putting the Pieces Together. Addison-Wesley Longman
Publishing Co., 2001.

[4] N. Medvidovic, E. M. Dashofy, and R. N. Taylor, “Moving Archi-
tectural Description from Under the Technology Lamppost,” Inf.
Softw. Technol., vol. 49, no. 1, pp. 12–31, 2007.

[5] N. Medvidovic and R. N. Taylor, “A Classification and Com-
parison Framework for Software Architecture Description Lan-
guages,” IEEE Trans. Softw. Eng., vol. 26, no. 1, pp. 70–93, January
2000.

[6] M. R. V. Chaudron and I. Crnkovic, Software Engineering: Principles
and Practice, 3rd Edition. Wiley, 2008, ch. 18 in H. van Vliet,
Component-Based Software Engineering.

[7] I. Crnkovic, M. R. V. Chaudron, and S. Larsson, “Component-
based Development Process and Component Lifecycle,” Journal
of Computing and Information Technology, vol. 13, no. 4, pp. 321–
327, November 2005.

[8] I. Crnkovic and M. Larsson, Building Reliable Component-Based
Software Systems. Norwood, MA, USA: Artech House, Inc., 2002.

[9] A. Beugnard, J.-M. Jézéquel, N. Plouzeau, and D. Watkins, “Mak-
ing Components Contract Aware,” Computer, vol. 32, no. 7, pp.
38–45, 1999.

[10] I. Crnkovic, M. Larsson, and O. Preiss, “Concerning Predictabil-
ity in Dependable Component-Based Systems: Classification of
Quality Attributes,” Architecting Dependable Systems III, pp. 257–
278, 2005.

[11] G. Kotonya, I. Sommerville, and S. Hall, “Towards A Classi-
fication Model for Component-Based Software Engineering Re-
search,” in EUROMICRO ’03: Proceedings of the 29th Conference on
EUROMICRO. Washington, DC, USA: IEEE Computer Society,
2003, p. 43.

[12] K.-K. Lau and Z. Wang, “Software Component Models,” Software
Engineering, IEEE Transactions on, vol. 33, no. 10, pp. 709–724, 2007.

[13] M. Åkerholm, J. Carlson, J. Fredriksson, H. Hansson,
J. Håkansson, A. Möller, P. Pettersson, and M. Tivoli, “The
SAVE approach to component-based development of vehicular
systems,” Journal of Systems and Software, vol. 80, no. 5, pp.
655–667, May 2007.

[14] S. Sentilles, A. Vulgarakis, T. Bures, J. Carlson, and I. Crnkovic, “A
Component Model for Control-Intensive Distributed Embedded
Systems,” in Proceedings of the 11th International Symposium on
Component Based Software Engineering (CBSE2008), M. R. V. Chau-
dron and C. Szyperski, Eds. Springer Berlin, October 2008, pp.
310–317.

[15] H. Maaskant, A Robust Component Model for Consumer Electronic
Products, ser. Philips Research. Springer, 2005, vol. 3, pp. 167–192.

[16] J. Cheesman and J. Daniels, UML Components: A Simple Process for
Specifying Component-Based Software. Boston, MA, USA: Addison-
Wesley Longman Publishing Co., Inc., 2000.

IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID 24

[17] R. van Ommering, F. van der Linden, J. Kramer, and J. Magee,
“The Koala Component Model for Consumer Electronics Soft-
ware,” Computer, vol. 33, no. 3, pp. 78–85, 2000.

[18] S. Becker, H. Koziolek, and R. Reussner, “The Palladio
component model for model-driven performance prediction,”
Journal of Systems and Software, vol. 82, pp. 3–22, 2009. [Online].
Available: http://dx.doi.org/10.1016/j.jss.2008.03.066

[19] C. Atkinson, J. Bayer, C. Bunse, E. Kamsties, O. Laitenberger,
R. Laqua, D. Muthig, B. Paech, J. Wüst, and J. Zettel, Component-
Based Product Line Engineering with UML. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc., 2002.

[20] S. Hissam, J. Ivers, D. Plakosh, and K. C. Wallnau, “Pin
Component Technology (V1.0) and Its C Interface,” Technical
Note: CMU/SEI-2005-TN-001, April 2005. [Online]. Available:
www.sei.cmu.edu/pub/documents/05.reports/pdf/05tn001.pdf

[21] E. . E. Group, “JSR 220: Enterprise JavaBeansTM,Version 3.0 EJB
Core Contracts and Requirements Version 3.0, Final Release,” May
2006.

[22] “OMG CORBA Component Model v4.0,”
http://www.omg.org/spec/CCM/4.0/.

[23] D. Box, Essential COM. Object Technology Series. Addison-Wesley,
1997.

[24] “Oxford Advanced Learners Dictionary,”
http://www.oxfordadvancedlearnersdictionary.com/.

[25] Sun Microsystems, “Javabeans specification,” 1997. [On-
line]. Available: java.sun.com/javase/technologies/desktop/
javabeans/docs/spec.html

[26] OSGi Alliance, “OSGi Service Plaform Core Specification, V4.1,”
2007.

[27] T. O. M. Group, “UML Superstructure Specification v2.1,”
http://www.omg.org/spec/UML/2.1.2/, April 2009.

[28] IEC, “Application and Implementation of IEC 61131-3,” IEC, 1995.
[29] K. Hanninen, J. Maki-Turja, M. Nolin, M. Lindberg, J. Lundback,

and K. Lundback, “The Rubus component model for resource
constrained real-time systems,” in International Symposium on
Industrial Embedded Systems, SIES 2008, June 2008, pp. 177–183,
digital Object Identifier: 10.1109/SIES.2008.45776.

[30] E. Bruneton, T. Coupaye, and J. Stefani, “The
Fractal component model specification,” The ObjectWeb
Consortium, Tech. Rep., Februar, 2004. [Online]. Available:
http://fractal.objectweb.org/specification/index.html

[31] A. Basu, M. Bozga, and J. Sifakis, “Modeling heterogeneous real-
time components in bip,” in SEFM ’06: Proceedings of the Fourth
IEEE International Conference on Software Engineering and Formal
Methods. Washington, DC, USA: IEEE Computer Society, 2006,
pp. 3–12.

[32] W. Emmerich, M. Aoyama, and J. Sventek, “The Impact of Re-
search on the Development of Middleware Technology,” ACM
Trans. Softw. Eng. Methodol., vol. 17, no. 4, pp. 1–48, 2008.

[33] M. Shaw, “Truth vs Knowledge: The Difference Between What
a Component Does and What We Know It Does,” International
Workshop on Software Specification and Design, p. 181, 1996.

[34] “PECT homepage,” www.sei.cmu.edu/pacc/pect init.html, ac-
cessed July 2008.

[35] S. Sentilles, P. Stepan, J. Carlson, and I. Crnkovic, “Integration of
Extra-Functional Properties in Component Models,” in 12th Inter-
national Symposium on Component Based Software Engineering (CBSE
2009), LNCS 5582, I. P. Christine Hofmeister, Grace A. Lewis, Ed.
Springer Berlin, LNCS 5582, June 2009.

[36] S. J. Mellor and M. Balcer, Executable UML: A Foundation for
Model-Driven Architectures. Boston, MA, USA: Addison-Wesley
Longman Publishing Co., Inc., 2002, foreword By-Jacoboson, Ivar.

[37] H. Breivold and M. Larsson, “Component-Based and Service-
Oriented Software Engineering: Key Concepts and Principles,”
Aug. 2007, pp. 13–20.

[38] AUTOSAR Development Partnership, “AUTOSAR – Technical
Overview V2.0.1,” Available www.autosar.org, June 2006.

[39] J. E. Kim, O. Rogalla, S. Kramer, and A. Haman, “Extracting,
Specifying and Predicting Software System Properties in Com-
ponent Based Real-Time Embedded Software Development,” in
Proceedings of the 31st International Conference on Software Engineer-
ing (ICSE), 2009.

[40] X. Ke, K. Sierszecki, and C. Angelov, “COMDES-II: A Component-
Based Framework for Generative Development of Distributed
Real-Time Control Systems,” in Proc. of the 13th IEEE International
Conference on Embedded and Real-Time Computing Systems and Ap-
plications. IEEE, 2007, pp. 199–208.

[41] R. Bastide and E. Barboni, “Component-Based Behavioural Mod-
elling with High-Level Petri Nets ,” in MOCA ’04 — Third
Workshop on Modelling of Objects, Components and Agents, Aahrus,
Denmark. DAIMI, octobre 2004, pp. 37–46.

[42] IEC, “IEC 61499 Function Blocks for Embedded and Distributed
Control Systems Design,” IEC, 2005.

[43] M. Clarke, G. Blair, G. Coulson, and N. Parlavantzas, “An Efficient
Component Model for the Construction of Adaptive Middle-
ware,” Proceedings of the IFIP/ACM International Conference on
Middleware, 2001.

[44] M. Winter, C. Zeidler, and C. Stich, “The PECOS Software Pro-
cess,” Workshop on Components-based Software Development Pro-
cesses, ICSR, 2002.

[45] J. Muskens, M. R. V. Chaudron, and J. J. Lukkien, Component-Based
Software Development for Embedded Systems , ser. Lecture Notes in
Computer Science. Springer, 2005, vol. 3778, ch. A Component
Framework for Consumer Electronics Middleware, pp. 164–184.

[46] T. Bureš, P. Hnetynka, and F. Plášil, “SOFA 2.0: Balancing Ad-
vanced Features in a Hierarchical Component Model,” Software
Engineering Research, Management and Applications, ACIS Interna-
tional Conference on, vol. 0, pp. 40–48, 2006.

[47] J. Feljan, L. Lednicki, J. Maras, A. Petricic, and
I. Crnkovic, “Classification and survey of component
models,” Technical Report: MRTC report ISSN 1404-
3041 ISRN MDH-MRTC-242/2009-1-SE, December 2009,
http://www.mrtc.mdh.se/index.php?choice=publications&id=
2099.

[48] S. Yacoub, H. Ammar, and A. Mili, “A Model for Classifying Com-
ponent Interfaces,” in Second International Workshop on Component-
Based Software Engineering, in conjunction with the 21 st International
Conference on Software Engineering (ICSE99, 1999, pp. 17–18.

[49] ——, “Characterizing a Software Component,” in In Proceedings
of the 2nd Workshop on Component-Based Software Engineering, in
conjunction with ICSE99, 1999.

[50] K. J. Fellner and K. Turowski, “Classification Framework for Busi-
ness Components,” in HICSS ’00: Proceedings of the 33rd Hawaii
International Conference on System Sciences-Volume 8. Washington,
DC, USA: IEEE Computer Society, 2000, p. 8047.

[51] M. Bozga, S. Graf, I. Ober, I. Ober, and J. Sifakis, “The IF Toolset,”
in SFM, 2004, pp. 237–267.

[52] G. Gössler, “Prometheus — A Compositional Modeling Tool for
Real-Time Systems.”

[53] C. Seceleanu, A. Vulgarakis, and P. Pettersson, “REMES: A Re-
source Model for Embedded Systems,” in In Proc. of the 14th IEEE
International Conference on Engineering of Complex Computer Systems
(ICECCS 2009). IEEE Computer Society, June 2009.

Ivica Crnkovi ć received the Ph.D. Degree (’91)
in computer science, and before that the M.Sc.
(’81) in computer science and M.Sc. in theoret-
ical physics (’84) all from the University of Za-
greb, Croatia. After 15 years of work in industry,
he moved to academia 1999. He is a professor
of software engineering and chair of Software
Engineering Division at Mälardalen University,
Sweden, and a professor at Faculty of Electrical
Engineering, University of Osijek, Croatia. He is
a co-author of two books, and the co-author of

more than 100 refereed publications on software engineering topics.
He was a general chair of ESEC/FSE 2007 conference, CBSE 2006,
Euromicro SEAA 2005 and he organized several other conferences
and workshops in the area of software engineering. Currently he is the
general chair of Comparch 2011, a federated conference that includes
CBSE 2011, QoSA 2011 and ISARCS 2011. During 2009-2011 he has
chaired the Comparch steering committee, and he is a co-chair of the
Euromicro SEAA technical committee. His research interests include
component-based software engineering, software architecture, software
configuration management, software development environments and
tools, and software engineering in general.

IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID 25

Séverine Sentilles received a Licentiate de-
gree (’09) in Computer Science at Mälardalen
University, Sweden and M.Sc. (’06) degree in
Computer Science from the Université de Pau et
des pays de l’Adour in France. She is currently
PhD student at Mälardalen University. Her main
research interests are centered on component-
based software engineering, model-driven en-
gineering, and software development environ-
ments and tools.

Aneta Vulgarakis received a Licentiate degree
(’09) in Computer Science at Mälardalen Univer-
sity, Sweden and M.Sc. degree (’06) at the Fac-
ulty of Electrical Engineering, Macedonia with
professional specialization in Computer Science,
Information Technology and Automation. She is
currently a PhD student at Mälardalen Univer-
sity. Her main research interests are component-
based software engineering, formal models and
verification techniques for constructing correct
and predictable real-time embedded systems.

Michel R.V. Chaudron received the M.Sc. (’92)
and Ph.D. (’98) degrees in Computer Science
from Leiden University in The Netherlands. He
spent a couple of years working in IT-industry
after which he worked at the TU Eindhoven.
Currently, he is associate professor at the Leiden
Institute of Advanced Computer Science where
he heads the ICT in Business M.Sc. program.
His main research interests are: Software Archi-
tecture, Component-based Software Engineer-
ing, UML, and empirical research in software

engineering. He has published more than 80 refereed papers in these
areas and is an active member of conferences in these areas.

